PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
verifyFunction/verifyModule don't assert or error internally. They
also don't print anything if you don't pass a raw_ostream to them.
So the caller needs to check the result and ideally pass a stream
to get the messages. Otherwise they're just really expensive no-ops.
I've filed PR45965 for another instance in SLPVectorizer
that causes a lit test failure.
Differential Revision: https://reviews.llvm.org/D80106
This bug is exposed by Test7 of ehthrow.cxx in MSVC EH suite where
a rethrow occurs in a try-catch inside a catch (i.e., a nested Catch
handlers). See the test code in
https://github.com/microsoft/compiler-tests/blob/master/eh/ehthrow.cxx#L346
When an object is rethrown in a Catch handler, the copy-ctor of this
object must be executed after the destructions of live objects, but
BEFORE the dtors of live objects in parent handlers.
Today Windows 64-bit runtime (__CxxFrameHandler3 & 4) expects nested Catch
handers
are stored in pre-order (outer first, inner next) in $tryMap$ table, so
that given a State, its Catch's beginning State can be properly
retrieved. The Catch beginning state (which is also the ending State) is
the State where rethrown object's copy-ctor must take place.
LLVM currently stores nested catch handlers in post-ordering because
it's the natural way to compute the highest State in Catch.
The fix is to simply store TryCatch handler in pre-order, but update
Catch's highest State after child Catches are all processed.
Differential Revision: https://reviews.llvm.org/D79474?id=263919
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
Summary:
- Add wasm personality function
- Re-categorize the existing `isFuncletEHPersonality()` function into
two different functions: `isFuncletEHPersonality()` and
`isScopedEHPersonality(). This becomes necessary as wasm EH uses scoped
EH instructions (catchswitch, catchpad/ret, and cleanuppad/ret) but not
outlined funclets.
- Changed some callsites of `isFuncletEHPersonality()` to
`isScopedEHPersonality()` if they are related to scoped EH IR-level
stuff.
Reviewers: majnemer, dschuff, rnk
Subscribers: jfb, sbc100, jgravelle-google, eraman, JDevlieghere, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45559
llvm-svn: 332667
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
Since r293359, most dump() function are only defined when
`!defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)` holds. print() functions
only used by dump() functions are now unused in release builds,
generating lots of warnings. This patch only defines some print()
functions if they are used.
Reviewers: MatzeB
Reviewed By: MatzeB
Subscribers: arsenm, mzolotukhin, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D35949
llvm-svn: 309553
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
This broke some out-of-tree AMDGPU tests that relied on the old behavior
wherein isIntrinsic() would return true for any function that starts
with "llvm.". And in general that change will not play nicely with
out-of-tree backends.
llvm-svn: 277087
Summary:
getName() involves a hashtable lookup, so is expensive given how
frequently isIntrinsic() is called. (In particular, many users cast to
IntrinsicInstr or one of its subclasses before calling
getIntrinsicID().)
This has an incidental functional change: Before, isIntrinsic() would
return true for any function whose name started with "llvm.", even if it
wasn't properly an intrinsic. The new behavior seems more correct to
me, because it's strange to say that isIntrinsic() is true, but
getIntrinsicId() returns "not an intrinsic".
Some callers want the old behavior -- they want to know whether the
caller is a recognized intrinsic, or might be one in some other version
of LLVM. For them, we added Function::hasLLVMReservedName(), which
checks whether the name starts with "llvm.".
This change is good for a 1.5% e2e speedup compiling a large Eigen
benchmark.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22065
llvm-svn: 276942
Summary:
MSVC provide exception handlers with enhanced information to deal with security buffer feature (/GS).
To be more secure, the security cookies (GS and SEH) are validated when unwinding the stack.
The following code:
```
void f() {}
void foo() {
__try {
f();
} __except(1) {
f();
}
}
```
Reviewers: majnemer, rnk
Subscribers: thakis, llvm-commits, chrisha
Differential Revision: http://reviews.llvm.org/D21101
llvm-svn: 274239
SimplifyCFG had logic to insert calls to llvm.trap for two very
particular IR patterns: stores and invokes of undef/null.
While InstCombine canonicalizes certain undefined behavior IR patterns
to stores of undef, phase ordering means that this cannot be relied upon
in general.
There are much better tools than llvm.trap: UBSan and ASan.
N.B. I could be argued into reverting this change if a clear argument as
to why it is important that we synthesize llvm.trap for stores, I'd be
hard pressed to see why it'd be useful for invokes...
llvm-svn: 273778
Clarify what this RemapFlag actually means.
- Change the flag name to match its intended behaviour.
- Clearly document that it's not supposed to affect globals.
- Add a host of FIXMEs to indicate how to fix the behaviour to match
the intent of the flag.
RF_IgnoreMissingLocals should only affect the behaviour of
RemapInstruction for function-local operands; namely, for operands of
type Argument, Instruction, and BasicBlock. Currently, it is *only*
passed into RemapInstruction calls (and the transitive MapValue calls
that it makes).
When I split Metadata from Value I didn't understand the flag, and I
used it in a bunch of places for "global" metadata.
This commit doesn't have any functionality change, but prepares to
cleanup MapMetadata and MapValue.
llvm-svn: 265628
Inline-asm calls aren't annotated with funclet bundle operands because
they don't throw and cannot be inlined through. We shouldn't require
them to bear an funclet bundle operand.
llvm-svn: 261942
Those commits created an artificial edge from a cleanup to a synthesized
catchswitch in order to get the MSVC personality routine to execute
cleanups which don't cleanupret and are not wrapped by a catchswitch.
This worked well enough but is not a complete solution in situations
where there the cleanup infinite loops.
However, the real deal breaker behind this approach comes about from a
degenerate case where the cleanup is post-dominated by unreachable *and*
throws an exception. This ends poorly because the catchswitch will
inadvertently catch the exception.
Because of this we should go back to our previous behavior of not
executing certain cleanups (identical behavior with the Itanium ABI
implementation in clang, GCC and ICC).
N.B. I think this could be salvaged by making the catchpad rethrow the
exception and properly transforming throwing calls in the cleanup into
invokes.
llvm-svn: 259338
A cleanup can have paths which unwind or end up in unreachable.
If there is an unreachable path *and* a path which unwinds to caller,
we would mistakenly inject an unwind path to a catchswitch on the
unreachable path. This results in a verifier assertion firing because
the cleanup unwinds to two different places: to the caller and to the
catchswitch.
This occured because we used getCleanupRetUnwindDest to determine if the
cleanuppad had no cleanuprets.
This is incorrect, getCleanupRetUnwindDest returns null for cleanuprets
which unwind to caller.
llvm-svn: 258651
Cleanups in C++ are a little weird. They are only guaranteed to be
reliably executed if, and only if, there is a viable catch handler which
can handle the exception.
This means that reachability of a cleanup is lexically determined by it
being nested with a try-block which unwinds to a catch. It is *cannot*
be reasoned about by examining the control flow edges leaving a cleanup.
Usually this is not a problem. It becomes a problem when there are *no*
edges out of a cleanup because we believed that code post-dominated by
the cleanup is dead. In LLVM's case, this code is what informs the
personality routine about the presence of a suitable catch handler.
However, the lack of edges to that catch handler makes the handler
become unreachable which causes us to remove it. By removing the
handler, the cleanup becomes unreachable.
Instead, inject a catch-all handler with every cleanup that has no
unwind edges. This will allow us to properly unwind the stack.
This fixes PR25997.
llvm-svn: 258580
Summary:
Rename to getCatchSwitchParentPad, to make it more clear which ancestor
the "parent" in question is. Add a comment pointing out the key feature
that the returned pad indicates which funclet contains the successor
block.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16222
llvm-svn: 257933
Windows EH keeping track of which frame index corresponds to a catchpad
in order to inform the runtime where the catch parameter should be
initialized. LLVM's optimizations are able to prove that the memory
used by the catch parameter can be reused with another memory
optimization, changing it's frame index.
We need to keep WinEHFuncInfo up to date with respect to this or we will
miscompile/assert.
This fixes PR26069.
llvm-svn: 257158