Add an assertion that a valid section is referenced. The potential NULL pointer
dereference was identified by the clang static analyzer.
llvm-svn: 204114
This checks that parameters named in comments that appear before arguments in
function and constructor calls match the parameter name used in the callee's
declaration. For example:
void f(int x, int y);
void g() {
f(/*y=*/0, /*z=*/0);
}
contains two violations of the policy, as the names 'x' and 'y' used in the
declaration do not match names 'y' and 'z' used at the call site.
I think there is significant value in being able to check/enforce this policy
as a way of guarding against accidental API misuse and silent breakages
caused by API changes.
Although this pattern appears somewhat frequently in the LLVM codebase,
this policy is not prescribed by the LLVM coding standards at the moment,
so it lives under 'misc'.
Differential Revision: http://llvm-reviews.chandlerc.com/D2914
llvm-svn: 204113
The standard JIT has been discarded in favour of MCJIT. USE_STANDARD_JIT is no
longer defined. Furthermore, the execution engine is now built in
IRExecutionUnit. Simply remove inclusion of both JIT headers.
llvm-svn: 204112
Multichar constants are not portable as the byte order is undefined. Use a
constant value instead. This avoids a warning when compiling with gcc 4.8+
(-Wmultichar) and makes the code more portable.
llvm-svn: 204110
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
This removes an attribute (and more importantly, a relocation) from
skeleton type units and removes some unnecessary file names from the
debug_line section that remains in the .o (and linked executable) file.
There's still a few places we could shave off some more space here:
* use compilation dir of the underlying compilation unit (since all the
type units share that compilation dir - though this would be more
complicated in LTO cases where they don't (keep a map of compilation
dir->line table header?))
* Remove some of the unnecessary header fields from the line table since
they're not needed in this situation (about 12 bytes per table).
llvm-svn: 204099
When emitting assembly there's no support for emitting separate line
tables for each compilation unit - so LLVM emits .loc directives
producing a single line table.
Line tables have an implicit directory (index 0) equal to the
compilation directory (DW_AT_comp_dir) of the compilation unit that
references them.
If multiple compilation units (with possibly disparate compilation
directories) reference the same line table, we must avoid relying on
this ambiguous directory.
Achieve this my simply not setting the compilation directory on the line
table when we're in this situation (multiple units while emitting
assembly).
llvm-svn: 204094
We still do a few lookups into the line table mapping in MCContext that
could be factored out into a single lookup (rather than looking it up
once for the table label, once to set the compilation unit, once for
each time we need a file ID, etc... ) but assembly output complicates
that somewhat as we still need a virtual dispatch back to the
MCAsmStreamer in that case.
llvm-svn: 204092
Our handling of compilation directory in DwarfDebug was broken
(incorrectly using the 'last' compilation directory (that of the last
CU in the metadata list) for all function emission in any CU). By moving
this handling down into MCDwarf the issue is fixed as the compilation
dir is tracked correctly per line table.
llvm-svn: 204089
warnings (warning or lack there of) as well since
blocks are another pattern for envoking other
designated initializers. // rdar://16323233
llvm-svn: 204081
In instrumentation-based profiling, we need a set of data structures to
represent the counters. Previously, these were built up during static
initialization. Now, they're shoved into a specially-named section so
that they show up as an array.
As a consequence of the reorganizing symbols, instrumentation data
structures for linkonce functions are now correctly coalesced.
This is the first step in a larger project to minimize runtime overhead
and dependencies in instrumentation-based profilng. The larger picture
includes removing all initialization overhead and making the dependency
on libc optional.
<rdar://problem/15943240>
llvm-svn: 204080
In instrumentation-based profiling, we need a set of data structures to
represent the counters. Previously, these were built up during static
initialization. Now, they're shoved into a specially-named section so
that they show up as an array.
As a consequence of the reorganizing symbols, instrumentation data
structures for linkonce functions are now correctly coalesced.
This is the first step in a larger project to minimize runtime overhead
and dependencies in instrumentation-based profilng. The larger picture
includes removing all initialization overhead and making the dependency
on libc optional.
<rdar://problem/15943240>
llvm-svn: 204079
This is as straightforward as it sounds, a renamed from shared_mutex to
shared_timed_mutex.
Note that libcxx .dylib and .so files built with c++14 support need to
be rebuilt.
llvm-svn: 204078
When GlobalOpt has determined that a GlobalVariable only ever has two values,
it would convert the GlobalVariable to a boolean, and introduce SelectInsts
at every load, to choose between the two possible values. These SelectInsts
introduce overhead and other unpleasantness.
This patch makes GlobalOpt just add range metadata to loads from such
GlobalVariables instead. This enables the same main optimization (as seen in
test/Transforms/GlobalOpt/integer-bool.ll), without introducing selects.
The main downside is that it doesn't get the memory savings of shrinking such
GlobalVariables, but this is expected to be negligible.
llvm-svn: 204076