//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// compile unit.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this compile
/// unit.
///
/// @return
/// A list of types in this compile unit that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want.
llvm-svn: 184251
did a manual "target modules add", it would be a file path. If the kext bundle lookup fails,
fall back to calling PlatformDarwin's GetSharedModule which will handle a file path correctly.
<rdar://problem/14179858>
llvm-svn: 184237
Modifying our data formatters matching algorithm to ensure that "const X*" is treated as equivalent to "X*"
Also, a couple improvements to the "lldb types" logging
llvm-svn: 184215
e.g.
(lldb) pl<TAB>
Available completions:
platform
plugin
platform
plugin
Thanks to Matthew Sorrels for doing work and testing on this issue
llvm-svn: 184212
Only add the — (double dash) separator to a command syntax if it has any options to be separated from arguments
Also remove the unused Translate() method from CommandObject
llvm-svn: 184163
Allow “command script import” to work with folder names that have a ‘ (tick) in them
Kudos to StackOverflow (question 1494399) for the replace_all code!
llvm-svn: 184158
3 patches, aiming to improve PE/COFF support:
- First patch fix symbol reading (invalid header size from sizeof() == 20 != 18, and various bugfixes such as invalid skipping of auxiliary symbols, 4 bytes shift from beginning, etc...).
- Second patch add image_base to section vmaddr offset so that VM addr is in image_base space.
- Third patch add support for DWARF section in PECOFF (taken from ELF counterpart), since they are generated by gcc/clang under windows.
llvm-svn: 184153
This is a rewrite of the command history facility of LLDB
It takes the history management out of the CommandInterpreter into its own CommandHistory class
It reimplements the command history command to allow more combinations of options to work correctly (e.g. com hist -c 1 -s 5)
It adds a new --wipe (-w) option to command history to allow clearing the history on demand
It extends the lldbtest runCmd: and expect: methods to allow adding commands to history if need be
It adds a test case for the reimplemented facility
llvm-svn: 184140
If you type help command <word> <word> <word> <missingSubCommand> (e.g. help script import or help type summary fake), you will get help on the deepest matched command word (i.e. script or type summary in the examples)
Also, reworked the logic for commands to produce their help to make it more object-oriented
llvm-svn: 183822
325,000 breakpoints for running "breakpoint set --func-regex ." on lldb itself (after hitting a breakpoint at main so that LLDB.framework is loaded) used to take up to an hour to set, now we are down under a minute. With warm file caches, we are at 40 seconds, and that is with setting 325,000 breakpoint through the GDB remote API. Linux and the native debuggers might be faster. I haven't timed what how much is debug info parsing and how much is the protocol traffic to/from GDB remote.
That there were many performance issues. Most of them were due to storing breakpoints in the wrong data structures, or using the wrong iterators to traverse the lists, traversing the lists in inefficient ways, and not optimizing certain function name lookups/symbol merges correctly.
Debugging after that is also now very efficient. There were issues with replacing the breakpoint opcodes in memory that was read, and those routines were also fixed.
llvm-svn: 183820
- exposing new accessors: formats/format, ..., that allow you to iterate over all formatters
e.g. sys_category = lldb.debugger.GetCategory("system").summary['char *']
- ensuring that C++-based synthetic children provider can at least print their description accurately, if nothing else
llvm-svn: 183805
Modified the test programs to use floating point constants that always will display correctly. We had some numbers that were being rounded, and now that we are using clang, we no longer round them and we get more correct results.
llvm-svn: 183792
Adding a new setting interpreter.stop-command-source-on-error that dictates a default behavior for whether command source should stop upon hitting an error
You can still override the setting for each individual invocation with the usual -e setting
llvm-svn: 183719
Add support for half-floats, as specified by IEEE-754-2008
With this checkin, you can now say:
(lldb) x/7hf foo
to read 7 half-floats at address foo
llvm-svn: 183716
level. Fixes a bug in "break set --source-pattern-regexp" when a shared library is
specified.
Also cleaned up the help text for --source-pattern-regexp so it is a little clearer.
<rdar://problem/14084261>
llvm-svn: 183476
lldb doesn't autocomplete objective C class methods. The regular expression was looking for strings that started with the completion string that was passed in. For objective C class methods, this string starts with "+" which wasn't being escaped. Added many other escapes that were missing just in case.
llvm-svn: 183470
condition in two different processes (with the
same target) could cause crashes. Now the breakpoint
condition is always evaluated (and possibly parsed)
by one thread at a time.
<rdar://problem/14083737>
llvm-svn: 183440
- Implemented the SExt instruction, and
- eliminated redundant codepaths for constant
handling.
Added test cases.
<rdar://problem/13244258>
<rdar://problem/13955820>
llvm-svn: 183344
Adding data formatters for std::set, std::multiset and std::multimap for libc++
The underlying data structure is the same as std::map, so this change is very minimal and mostly consists of test cases
llvm-svn: 183323
- Ensures that this container is populated once for the lifetime of lldb
--- In particular, static methods can query this data even after the first RegisterContext has been destroyed.
- Uses a singleton function to avoid global constructors.
Thanks to Greg Clayton for the suggestion!
llvm-svn: 183313
the link register save location being in the link register - in which case we
should iterate down the stack, not recursively try to find the lr in the current
frame over and over.
<rdar://problem/13932954>
llvm-svn: 183282
Two things:
1) fixing a bug where memory read was not clearing the m_force flag after it was passed, so that subsequent memory reads would not need to be forced even if over boundary
2) adding a setting target.max-memory-read-size that you can set instead of the hardcoded 1024 bytes limit we had before
llvm-svn: 183276
If you want to define a formatter for "array of Foo of any size", ordinarily you would say
-x "Foo \[[0-9]+\]"
this checkin allows you to instead say "Foo[]" (or "Foo []") and LLDB will automatically create the regular expression and add the -x flag on your behalf
llvm-svn: 183272
Accept mach-o files with bad segments. Many core files are not created correctly and we should still be able to glean any information we can from them.
llvm-svn: 183247
Fixing an issue where formats would not propagate from parents to children in all cases
Details follow:
an SBValue has children and those are fetched along with their values
Now, one calls SBValue::SetFormat() on the parent
Technically, the format choices should propagate onto the children (see ValueObject::GetFormat())
But if the children values are already fetched, they won't notice the format change and won't update themselves
This commit fixes that by making ValueObject::GetValueAsCString() check if any format change intervened from the previous call to the current one
A test case is also added
llvm-svn: 183030
command script import now does reloads - for real
If you invoke command script import foo and it detects that foo has already been imported, it will
- invoke reload(foo) to reload the module in Python
- re-invoke foo.__lldb_init_module
This second step is necessary to ensure that LLDB does not keep cached copies of any formatter, command, ... that the module is providing
Usual caveats with Python imports persist. Among these:
- if you have objects lurking around, reloading the module won't magically update them to reflect changes
- if module A imports module B, reloading A won't reload B
These are Python-specific issues independent of LLDB that would require more extensive design work
The --allow-reload (-r) option is maintained for compatibility with existing scripts, but is clearly documented as redundant - reloading is always enabled whether you use it or not
llvm-svn: 182977
Cleaned up the thread updating code in the OperatingSystemPython class. It doesn't need to clear the "new_thread_list" anymore as it is always empty.
It also now assigns the "core_thread_list" to "new_thread_list" if no threads are detected through python.
llvm-svn: 182893
Giving a timeout for the call to NSPrintForDebugger() that happens when you “po” objects
This is a temporary workaround until a more detailed solution to the general problem of canceling actions is found
llvm-svn: 182782
Fixed performance issues that arose after changing SBTarget, SBProcess, SBThread and SBFrame over to using a std::shared_ptr to a ExecutionContextRef. The ExecutionContextRef doesn't store a std::weak_ptr to a stack frame because stack frames often get replaced with new version, so it held onto a StackID object that would allow us to ask the thread each time for the frame for the StackID. The linear function was too slow for large recursive stacks. We also fixed an issue where anytime the std::shared_ptr<ExecutionContextRef> in any SBTarget, SBProcess, SBThread objects was turned into an ExecutionContext object, it would try to resolve all items in the ExecutionContext which are shared pointers. Even if the StackID in the ExecutionContextRef was invalid, it was looking through all frames in every thread. This causes a lot of unnecessary frame accesses.
llvm-svn: 182627
Which means "platform process list" should work and list the architecture.
We are now parsing the elf build-id if it exists, which should allow us to load stripped symbols (looking at that next).
llvm-svn: 182610
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609
Added logging for the OS plug-in python objects in OperatingSystemPython so we can see the python dictionary returned from the plug-in when logging is enabled.
llvm-svn: 182530
live as long as they needed to. This led to
equality tests involving persistent variables
often failing or succeeding when they had no
business doing so.
To do this, I introduced the ability for a
memory allocation to "leak" - that is, to
persist in the process beyond the lifetime of
the expression. Hand-declared persistent
variables do this now.
<rdar://problem/13956311>
llvm-svn: 182528
Fixed ProcessMachCore to be able to locate the main executeable in the core file even if it doesn't start at a core file address range boundary. Prior to this we only checked the first bytes of each range in the core file for mach_kernel or dyld. Now we still do this, but if we don't find the mach_kernel or dyld anywhere, we go through all core file ranges and check every 0x1000 to see if we can find dyld or the mach_kernel.
Now that we can properly detect the mach_kernel at any address, we don't need to call "DynamicLoaderDarwinKernel::SearchForDarwinKernel(Process*)" anymore.
llvm-svn: 182513
Lock the lldb_private::Module mutex while tearing down the module to make sure we don't get clients accessing the contents on a module as it is going away.
llvm-svn: 182511
Another fix to make sure that if we aren't able to extract an object file for any reason, we don't crash when trying to parse the debug map info.
llvm-svn: 182441
Yet another implementation of the python in dSYM autoload :)
This time we are going with a ternary setting:
true - load, do not warn
false - do not load, do not warn
warn - do not load, warn (default)
llvm-svn: 182414
A user request such as: memory read -fc -s10 -c1 *charPtrPtr would cause us to crash upon trying to read 1 char of size 10 from memory
This request is now translated into: memory read -fc -s1 -c10 *charPtrPtr (i.e. read 10 chars of size 1 from memory) which is probably also what the user originally wanted
llvm-svn: 182398
There are two settings:
target.load-script-from-symbol-file is a boolean that says load or no load (default: false)
target.warn-on-script-from-symbol-file is also a boolean, it says whether you want to be warned when a script file is not loaded due to security (default: true)
the auto loading on change for target.load-script-from-symbol-file is preserved
llvm-svn: 182336
This changes the setting target.load-script-from-symbol-file to be a ternary enum value:
default (the default value) will NOT load the script files but will issue a warning suggesting workarounds
yes will load the script files
no will not load the script files AND will NOT issue any warning
if you change the setting value from default to yes, that will then cause the script files to be loaded
(the assumption is you didn't know about the setting, got a warning, and quickly want to remedy it)
if you have a settings set command for this in your lldbinit file, be sure to change "true" or "false" into an appropriate "yes" or "no" value
llvm-svn: 182323
Name matching was working inconsistently across many places in LLDB. Anyone doing name lookups where you want to look for all types of names should used "eFunctionNameTypeAuto" as the sole name type mask. This will ensure that we get consistent "lookup function by name" results. We had many function calls using as mask like "eFunctionNameTypeBase | eFunctionNameTypeFull | eFunctionNameTypeMethod | eFunctionNameTypeSelector". This was due to the function lookup by name evolving over time, but as it stands today, use eFunctionNameTypeAuto when you want general name lookups. Either ModuleList::FindFunctions() or Module::FindFunctions() will figure out the right kinds of names to lookup and remove the "eFunctionNameTypeAuto" and replace it with the exact subset of what the name can be.
This checkin also changes eFunctionNameTypeAny over to use eFunctionNameTypeAuto to reflect this.
llvm-svn: 182179
- copy lldb python module into directory specified with CMAKE_INSTALL_PREFIX
- make liblldb.so a symlink (to liblldb.so.X.Y where X.Y is the LLVM version)
llvm-svn: 182157
-Remove tracing of fork/vfork until we add support for tracing inferiors' children on Linux.
-Add trace exec option for ptrace so that we don't receive legacy SIGTRAP signals on execve calls.
-Add handling of SIGCHLD sent by kernel (for now, deliver the signal to the inferior).
llvm-svn: 182153
"source list -n <func>" can now show more than one location that matches a function name. It will unique multiple of the same source locations so they don't get displayed. It also handles inline functions correctly.
llvm-svn: 182067
Show variables that were in the debug info but optimized out. Also display a good error message when one of these variables get used in an expression.
llvm-svn: 182066
regions that aren't actually allocated in the
process. This cache is used by the expression
parser if the underlying process doesn't support
memory allocation, to avoid needless repeated
searches for unused address ranges.
Also fixed a silly bug in IRMemoryMap where it
would continue searching even after it found a
valid region.
<rdar://problem/13866629>
llvm-svn: 182028
Make type summary add and breakpoint command add show an helpful prototype + argument reference when manually typing Python code for these elements
llvm-svn: 181968
Fixed "target symbols add" to correctly extract all module specifications from a dSYM file that is supplied and match the symbol file to a current target module using the UUID values if they are available.
This fixes the case where you add a dSYM file (like "foo.dSYM") which is for a renamed executable (like "bar"). In our case it was "mach_kernel.dSYM" which didn't match "mach_kernel.sys".
llvm-svn: 181916
- newlines from GetRepositoryPath output were interfering with ninja builds
- replace newlines with spaces
- remove *only* trailing spaces from repo path
llvm-svn: 181899
Python breakpoint actions can return False to say that they don't want to stop at the breakpoint to which they are associated
Almost all of the work to support this notion of a breakpoint callback was in place, but two small moving parts were missing:
a) the SWIG wrapper was not checking the return value of the script
b) when passing a Python function by name, the call statement was dropping the return value of the function
This checkin addresses both concerns and makes this work
Care has been taken that you only keep running when an actual value of False has been returned, and that any other value (None included) means Stop!
llvm-svn: 181866
process StopLocker (if there is a process) before it will hand out SBValues. We were doing this in
an ad hoc fashion previously, and then playing whack-a-mole whenever we found a place where we should
have been doing this but weren't. Really, it doesn't make sense to be poking at SBValues when the target
is running, the dynamic and synthetic values can't really be computed, and the underlying memory may be
incoherent.
<rdar://problem/13819378> Sometimes when stepping fast, my inferior is killed by debugserver
llvm-svn: 181863
Combine N_GSYM stab entries with their non-stab counterpart (data symbols) to make the symbol table smaller with less duplicate named symbols.
llvm-svn: 181841
- add IsVirtualStep() virtual function to ThreadPlan, and implement it for
ThreadPlanStepInRange
- make GetPrivateStopReason query the current thread plan for a virtual stop to
decide if the current stop reason needs to be preserved
- remove extra check for an existing process in GetPrivateStopReason
llvm-svn: 181795
Most importantly, have DoReadGPR/DoReadFPU/DoReadEXC return -1
to indicate failure if they're called. Else these could override
the Error setting for the relevant thread state -- if the core file
didn't include a floating point thread state, for instance, these
functions would clear the Error setting for that register set and
lldb would display random bytes as those registers' contents.
<rdar://problem/13665075>
llvm-svn: 181757
- Also refactors TestRegisters.py because test_convenience_registers_with_process_attach now fails with an assert.
TODO: Cross-reference the skipOnLinux decorator with a bugzilla report after root-causing this issue.
llvm-svn: 181737
Provide a mechanism through which users can disable loading the Python scripts from dSYM files
This relies on a target setting: target.load-script-from-symbol-file which defaults to false ("do NOT load the script")
You need to set it to true before creating your target (or in your lldbinit file if you constantly rely on this feature) to allow the scripts to load
llvm-svn: 181709
names when specifying the DynamicLoaderDarwinKernel.
ProcessGDBRemote wasn't setting the dyld string any more; remove
the remaining code tracking the dyld plugin name altogether from
that process plugin.
llvm-svn: 181658
Don't want about being unable to find a needed objective-c runtime
function when we're core file debugging and can't jit anything
anyway. Don't warn when quitting a debug session on a core file,
the program state can be reconstructed by re-running lldb on the
same core file again.
llvm-svn: 181653
Avoid a deadlock when using the OperatingSystemPython code and typing "process interrupt". There was a possible lock inversion between the target API lock and the process' thread list lock due to code trying to discard the thread list. This was fixed by adding a boolean to Process::Halt() that indicates if the thread plans should be discarded and doing it in the private state thread when we process the stopped state.
llvm-svn: 181651
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
This re-submission of this patch fixes a problem where the code sometimes caused a deadlock. The Process::SetPrivateState method was locking the Process::m_private_state variable and then later calling ThreadList::DidStop, which locks the ThreadList mutex. Other methods in ThreadList which were being called from other threads lock the ThreadList mutex and then call Process::GetPrivateState which locks the Process::m_private_state mutex. To avoid deadlocks, Process::SetPrivateState now locks the ThreadList mutex before locking the Process::m_private_state mutex.
llvm-svn: 181609
- Eliminated the use of static for methods that read m_register_infos, so that these routines can be implemented in the base class.
- Eliminated m_register_infos in the base class because this is not used when derived classes call UpdateRegisterInfo.
- Also moved the namespace using declarations from headers to source files.
Thanks to Daniel and Samuel for their review feedback.
llvm-svn: 181538
Recursive commands invocations are not currently supported by our CommandInterpreter
CommandScriptImport can actually be made to invoke itself recursively, so we need to work around that by clearing the m_exe_ctx
This is a short-term workaround, a more interesting solution would be to actually make sure recursive command invocations work properly
llvm-svn: 181537
namespace lldb_private {
class Thread
{
virtual lldb::StopInfoSP
GetPrivateStopReason() = 0;
};
}
To not be virtual. The lldb_private::Thread now handles the correct caching and will call a new pure virtual function:
namespace lldb_private {
class Thread
{
virtual bool
CalculateStopInfo() = 0;
}
}
This function must be overridden by thead lldb_private::Thread subclass and the only thing it needs to do is to set the Thread::StopInfo() with the current stop reason and return true, or return false if there is no stop reason. The lldb_private::Thread class will take care of calling this function only when it is required. This allows lldb_private::Thread subclasses to be a bit simpler and not all need to duplicate the cache and invalidation settings.
Also renamed:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopReason();
To:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopInfo();
Also cleaned up a case where the ThreadPlanStepOverBreakpoint might not re-set its breakpoint if the thread disappears (which was happening due to a bug when using the OperatingSystem plug-ins with memory threads and real threads).
llvm-svn: 181501
to the DeclContext. This fulfils the contract that
we make with Clang by returning ELR_AlreadyLoaded.
This is a little aggressive in that it does not allow
the ASTImporter to import the child decls with any
lexical parent other than the Decl that reported them
as children.
<rdar://problem/13517713>
llvm-svn: 181498
This commit changes the ${function.name-with-args} prompt keyword to also tackle structs
Previously, since aggregates have no values, this would show up as foo=(null)
This checkin changes that to instead print foo=(Foo at 0x123) (i.e. typename at address)
There are other potential choices here (summary, one-liner printout of all members, ...) and I would love to hear feedback about better options, if any
llvm-svn: 181462
- Played with the current dual run lock implementation for a few days, noticed
no regressions, so enabling in trunk so we see if any problems are detected
by buildbots.
llvm-svn: 181446
value. This fixes problems, for instance, with the StepRange plans, where they know that
they explained the stop because they were at their "run to here" breakpoint, then deleted
that breakpoint, so when they got asked again, doh! I had done this for a couple of plans
in an ad hoc fashion, this just formalizes it.
Also add a "ResumeRequested" in Process so that the code in the completion handlers can
tell the ShouldStop logic they want to resume rather than just directly resuming. That allows
us to handle resuming in a more controlled fashion.
Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when
the target was immediately restarted.
--This line, and those below , will be ignored--
M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py
M include/lldb/Target/ThreadList.h
M include/lldb/Target/ThreadPlanStepOut.h
M include/lldb/Target/Thread.h
M include/lldb/Target/ThreadPlanBase.h
M include/lldb/Target/ThreadPlanStepThrough.h
M include/lldb/Target/ThreadPlanStepInstruction.h
M include/lldb/Target/ThreadPlanStepInRange.h
M include/lldb/Target/ThreadPlanStepOverBreakpoint.h
M include/lldb/Target/ThreadPlanStepUntil.h
M include/lldb/Target/StopInfo.h
M include/lldb/Target/Process.h
M include/lldb/Target/ThreadPlanRunToAddress.h
M include/lldb/Target/ThreadPlan.h
M include/lldb/Target/ThreadPlanCallFunction.h
M include/lldb/Target/ThreadPlanStepOverRange.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp
M source/Target/StopInfo.cpp
M source/Target/Process.cpp
M source/Target/ThreadPlanRunToAddress.cpp
M source/Target/ThreadPlan.cpp
M source/Target/ThreadPlanCallFunction.cpp
M source/Target/ThreadPlanStepOverRange.cpp
M source/Target/ThreadList.cpp
M source/Target/ThreadPlanStepOut.cpp
M source/Target/Thread.cpp
M source/Target/ThreadPlanBase.cpp
M source/Target/ThreadPlanStepThrough.cpp
M source/Target/ThreadPlanStepInstruction.cpp
M source/Target/ThreadPlanStepInRange.cpp
M source/Target/ThreadPlanStepOverBreakpoint.cpp
M source/Target/ThreadPlanStepUntil.cpp
M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme
llvm-svn: 181381
a new section is added to the executable after the dSYM has been created, e.g.
the CTF segment added to mach_kernel after all other linking and processing has
been finished.
<rdar://problem/13258780>
llvm-svn: 181375