This is a new draft of D28234. I previously did the unorthodox thing of
pushing to it when I wasn't the original author, but since this version
- Uses `GNUInstallDirs`, rather than mimics it, as the original author
was hesitant to do but others requested.
- Is much broader, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I am using this patch (and many back-ports) as the basis of
https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS). It
looked like people were generally on board in D28234, but I make note of
this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM
already has some partial support for these sorts of things. For example
`LLVM_LIBDIR_SUFFIX`, or `COMPILER_RT_INSTALL_PATH`. Because it's not
quite clear yet what to do about those, we are holding off on changing
libdirs and `compiler-rt`. for this initial PR.
---
On the advice of @lebedev.ri, I am splitting this up a bit per
subproject, starting with LLVM. To allow it to be more easily reviewed. This and the subsequent patch must be landed together, as this will not build alone. But the rest can be landed on their own.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D100810
A build on `sparcv9-sun-solaris2.11` with `-DLLVM_ENABLE_PIC=Off` failed
linking `libRemarks.so`:
[27/2297] Linking CXX shared library lib/libRemarks.so.12git
FAILED: lib/libRemarks.so.12git
[...]
ld: fatal: relocation error: R_SPARC_H44: file lib/libLLVMRemarks.a(Remark.cpp.o): symbol _ZTVN4llvm18raw_string_ostreamE: invalid shared object relocation type: ABS44 code model unsupported
[...]
On Solaris/sparcv9 as on many other targets you cannot link non-PIC objects
into a shared object.
The following patch avoids this by not building the library with PIC. It
allowed the build to complete and `ninja check-all` showed no errors.
Differential Revision: https://reviews.llvm.org/D85626
This patch optionally replaces the CRT allocator (i.e., malloc and free) with rpmalloc (mixed public domain licence/MIT licence) or snmalloc (MIT licence) or mimalloc (MIT licence). Please note that the source code for these allocators must be available outside of LLVM's tree.
To enable, use `cmake ... -DLLVM_INTEGRATED_CRT_ALLOC=D:/git/rpmalloc -DLLVM_USE_CRT_RELEASE=MT` where `D:/git/rpmalloc` has already been git clone'd from `https://github.com/mjansson/rpmalloc`. The same applies to snmalloc and mimalloc.
When enabled, the allocator will be embeded (statically linked) into the LLVM tools & libraries. This currently only works with the static CRT (/MT), although using the dynamic CRT (/MD) could potentially work as well in the future.
When enabled, this changes the memory stack from:
new/delete -> MS VC++ CRT malloc/free -> HeapAlloc -> VirtualAlloc
to:
new/delete -> {rpmalloc|snmalloc|mimalloc} -> VirtualAlloc
The goal of this patch is to bypass the application's global heap - which is thread-safe thus inducing locking - and instead take advantage of a modern lock-free, thread cache, allocator. On a 6-core Xeon Skylake we observe a 2.5x decrease in execution time when linking a large scale application with LLD and ThinLTO (12 min 20 sec -> 5 min 34 sec), when all hardware threads are being used (using LLD's flag /opt:lldltojobs=all). On a dual 36-core Xeon Skylake with all hardware threads used, we observe a 24x decrease in execution time (1 h 2 min -> 2 min 38 sec) when linking a large application with LLD and ThinLTO. Clang build times also see a decrease in the range 5-10% depending on the configuration.
Differential Revision: https://reviews.llvm.org/D71786
The bitstream remark serializer landed in r367372.
This adds a bitstream remark parser that parser bitstream remark files
to llvm::remarks::Remark objects through the RemarkParser interface.
A few interesting things to point out:
* There are parsing helpers to parse the different types of blocks
* The main parsing helper allows us to parse remark metadata and open an
external file containing the encoded remarks
* This adds a dependency from the Remarks library to the BitstreamReader
library
* The testing strategy is to create a remark entry through YAML, parse
it, serialize it to bitstream, parse that back and compare the objects.
* There are close to no tests for malformed bitstream remarks, due to
the lack of textual format for the bitstream format.
* This adds a new C API for parsing bitstream remarks:
LLVMRemarkParserCreateBitstream.
* This bumps the REMARKS_API_VERSION to 1.
Differential Revision: https://reviews.llvm.org/D67134
llvm-svn: 371429
Before, everything was based on some kind of type erased parser
implementation which container a lot of boilerplate code when multiple
formats were to be supported.
This simplifies it by:
* the remark now owns its arguments
* *always* returning an error from the implementation side
* working around the way the YAML parser reports errors: catch them through
callbacks and re-insert them in a proper llvm::Error
* add a CParser wrapper that is used when implementing the C API to
avoid cluttering the C++ API with useless state
* LLVMRemarkParserGetNext now returns an object that needs to be
released to avoid leaking resources
* add a new API to dispose of a remark entry: LLVMRemarkEntryDispose
llvm-svn: 366217
Summary:
This will simplify the macros by allowing us to remove the hard-coded
list of libraries that should be installed when
LLVM_INSTALL_TOOLCHAIN_ONLY is enabled.
Reviewers: beanz, smeenai
Reviewed By: beanz
Subscribers: aheejin, mehdi_amini, mgorny, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64580
llvm-svn: 365902
This adds a Remark class that allows us to share code when working with
remarks.
The C API has been updated to reflect this. Instead of the parser
generating C structs, it's now using a C++ object that is used through
opaque pointers in C. This gives us much more flexibility on what
changes we can make to the internal state of the object and interacts
much better with scenarios where the library is used through dlopen.
* C API updates:
* move from C structs to opaque pointers and functions
* the remark type is now an enum instead of a string
* unit tests updates:
* use mostly the C++ API
* keep one test for the C API
* rename to YAMLRemarksParsingTest
* a typo was fixed: AnalysisFPCompute -> AnalysisFPCommute.
* a new error message was added: "expected a remark tag."
* llvm-opt-report has been updated to use the C++ parser instead of the
C API
Differential Revision: https://reviews.llvm.org/D59049
Original llvm-svn: 356491
llvm-svn: 356519
This adds a Remark class that allows us to share code when working with
remarks.
The C API has been updated to reflect this. Instead of the parser
generating C structs, it's now using a C++ object that is used through
opaque pointers in C. This gives us much more flexibility on what
changes we can make to the internal state of the object and interacts
much better with scenarios where the library is used through dlopen.
* C API updates:
* move from C structs to opaque pointers and functions
* the remark type is now an enum instead of a string
* unit tests updates:
* use mostly the C++ API
* keep one test for the C API
* rename to YAMLRemarksParsingTest
* a typo was fixed: AnalysisFPCompute -> AnalysisFPCommute.
* a new error message was added: "expected a remark tag."
* llvm-opt-report has been updated to use the C++ parser instead of the
C API
Differential Revision: https://reviews.llvm.org/D59049
llvm-svn: 356491
Getting rid of the name "optimization remarks" for anything that
involves handling remarks on the client side.
It's safer to do this now, before we get stuck with that name in all the
APIs and public interfaces we decide to export to users in the future.
This renames llvm/tools/opt-remarks to llvm/tools/remarks-shlib, and now
generates `libRemarks.dylib` instead of `libOptRemarks.dylib`.
Differential Revision: https://reviews.llvm.org/D58535
llvm-svn: 355439