Some PDB Symbols don't have line information. Use the section contributions to determine their compiland.
This is useful to determine the parent compiland for PDBSymbolTypeData, i.e. variables.
llvm-svn: 328232
The issue was that the ASTDumper was being passed a null pointer
(because we did not create any declaration for the operator==). The
crash was in logging code, so it only manifested it self if you ran the
tests with logging enabled (like our bots do).
Given that this is logging code and the rest of the debugger is fine
with the declaration being null, I just make sure the logging code can
handle it as well. Right now I just do the null check in
ClangExpressionDeclMap, but if the ASTDumper class is meant to be a
debugging/logging aid, then it might be a good idea move the check
inside the class itself.
llvm-svn: 328088
Instead of applying the sledgehammer of refusing to insert any
C++ symbol in the ASTContext, try to validate the decl if what
we have is an operator. There was other code in lldb which was
responsible for this, just not really exposed (or used) in this
codepath. Also, add a better/more comprehensive test.
<rdar://problem/35645893>
llvm-svn: 328025
While trying to use this header I noticed that it is not in the include
folder. Move it to there and update all #includes to reference that file
correctly.
llvm-svn: 327996
The difference between this and the previous patch is that now we use
ELF physical addresses only for loading objects into the target (and the
rest of the module load address logic still uses virtual addresses).
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: llvm-commits, arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>.
llvm-svn: 327970
Now the codebase can use the DWARFUnit superclass. It will make it later
seamlessly work also with DWARFPartialUnit for DWZ.
This patch is only a search-and-replace easily undone, nothing interesting
in it.
Differential revision: https://reviews.llvm.org/D42892
llvm-svn: 327810
DW_TAG_partial_unit for DWZ can be then presented by DWARFPartialUnit also
inherited from DWARFUnit.
Differential revision: https://reviews.llvm.org/D40466
llvm-svn: 327809
Summary:
When in a gmodules-like debugging scenario, you can have a parent decl context
that gets imported from an external AST. When this happens, we must be careful
to complete this type before adding children to it, otherwise it sometimes
results in a crash.
Reviewers: clayborg, jingham
Subscribers: aprantl, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D43592
llvm-svn: 327750
Before the patch:
(lldb) frame var emptyDictionary
(__NSDictionary0 *) emptyDictionary = 0x0000000100304420
After:
(lldb) frame var emptyDictionary
(__NSDictionary0 *) emptyDictionary = 0x0000000100304420 0 key/value pairs
There's nothing much else we can do, as this is always empty by
definition.
<rdar://problem/34806516>
llvm-svn: 327587
Summary:
The types for the compiland's children are parsed when parsing types for a PDB compiland. Global types also need to be parsed but unfortunately PDBs do not have compiland information about each global type. So we parse them all on the first call to ParseTypes.
If a sc.function is provided then parse the types for that function. Otherwise parse the types for the overall sc.comp_unit.
The ParseTypes method can be very slow if a program has a long list of compile units containing needed modules. Debugging clang-cl with lldb will show the problem.
Reviewers: zturner, rnk, lldb-commits
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44253
llvm-svn: 327473
clang-3.8 complains that constructor for '...' must explicitly
initialize the const member. Newer clangs and gcc seem to be fine with
this, but explicitly initializing the member does not hurt.
llvm-svn: 327380
Typical example, illformed comparisons (operator== where LHS and
RHS are not compatible). If a symbol matched `operator==` in any
of the object files lldb inserted a generic function declaration
in the ASTContext on which Sema operates. Maintaining the AST
context invariants is fairly tricky and sometimes resulted in
crashes inside clang (or assertions hit).
The real reason why this feature exists in the first place is
that of allowing users to do something like:
(lldb) call printf("patatino")
even if the debug informations for printf() is not available.
Eventually, we might reconsider this feature in its
entirety, but for now we can't remove it as it would break
a bunch of users. Instead, try to limit it to non-C++ symbols,
where getting the invariants right is hopefully easier.
Now you can't do in lldb anymore
(lldb) call _Zsomethingsomething(1,2,3)
but that doesn't seem to be such a big loss.
<rdar://problem/35645893>
llvm-svn: 327356
This reverts commit r327318. It breaks the Xcode and CMake Darwin
builders:
clang: error: no such file or directory:
'.../source/Plugins/Architecture/PPC64/ArchitecturePPC64.cpp'
clang: error: no input files
More details are in https://reviews.llvm.org/D42582.
llvm-svn: 327327
Summary:
Besides being superfluous, this double merging was actually wrong and
causing some sections to be added twice. The reason for that was that
the code assumes section IDs are unique in the section list, but this is
only true if all sections in the list come from the same object file.
Reviewers: fjricci, jankratochvil
Subscribers: emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D44157
llvm-svn: 327123
Summary:
The args class is used in plenty of places (a lot of them in the lower lldb
layers) for representing a list of arguments, and most of these places don't
care about option parsing. Moving the option parsing out of the class removes
the largest external dependency (there are a couple more, but these are in
static functions), and brings us closer to being able to move it to the
Utility module).
The new home for these functions is the Options class, which was already used
as an argument to the parse calls, so this just inverts the dependency between
the two.
The functions are themselves are mainly just copied -- the biggest functional
change I've made to them is to avoid modifying the input Args argument (getopt
likes to permute the argument vector), as it was weird to have another class
reorder the entries in Args class. So now the functions don't modify the input
arguments, and (for those where it makes sense) return a new Args vector
instead. I've also made the addition of a "fake arg0" (required for getopt
compatibility) an implementation detail rather than a part of interface.
While doing that I noticed that ParseForCompletion function was recording the
option indexes in the shuffled vector, but then the consumer was looking up the
entries in the unshuffled one. This manifested itself as us not being able to
complete "watchpoint set variable foo --" (because getopt would move "foo" to
the end). Surprisingly all other completions (e.g. "watchpoint set variable foo
--w") were not affected by this. However, I couldn't find a comprehensive test
for command argument completion, so I consolidated the existing tests and added
a bunch of new ones.
Reviewers: davide, jingham, zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D43837
llvm-svn: 327110
Summary:
- Complete element type of PDBSymbolTypeArray.
- Add a test to check types of multi-dimensional array and pointers with CVR.
Reviewers: zturner, rnk, lldb-commits
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44167
llvm-svn: 326859
Summary:
In an effort to understand the function's operation, I've split it into logical
pieces. Parsing of a single segment is moved to a separate function (and the
parsing state that is carried from one segment to another is explicitly
captured in the SegmentParsingContext object). I've also extracted some pieces
of code which were already standalone (validation of the segment load command,
determining the section type, determining segment permissions) into
separate functions.
Parsing of a single section within the segment should probably also be a
separate function, but I've left that for a separate patch.
This patch is intended to be NFC.
Reviewers: clayborg, davide
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D44074
llvm-svn: 326791
Summary:
- reg_nums were missing the end marker entry
- marked FP test to be skipped for ppc64
Reviewers: labath, clayborg
Reviewed By: labath, clayborg
Subscribers: alexandreyy, lbianc, nemanjai, kbarton
Differential Revision: https://reviews.llvm.org/D43767
Patch by Leandro Lupori <leandro.lupori@gmail.com>
llvm-svn: 326775
It turns out that setting the clang module cache after LLDB has a
Target can be too late. In particular, the Swift language plugin needs
to know the setting without having access to a Target. This patch
moves the setting into the *LLDB* module cache, where it is a global
setting that is available before any Target is created and more
importantly, is shared between all Targets.
rdar://problem/37944432
Differential Revision: https://reviews.llvm.org/D43984
llvm-svn: 326628
There's a bug in FindTypes, it ignores the exact flag if you pass a name that doesn't begin with
:: and pass eTypeClassAny for the type.
In this case we always know that the name we get from the vtable name is absolute so we can
work around the bug by prepending the "::". This doesn't fix the FindTypes bug.
<rdar://problem/38010986>
llvm-svn: 326412
This reverts commit r326261 as it introduces inconsistencies in the
handling of load addresses for ObjectFileELF -- some parts of the class
use physical addresses, and some use virtual. This has manifested itself
as us not being able to set the load address of the vdso "module" on
android.
llvm-svn: 326367
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>
llvm-svn: 326261
Removing the template arguments and most of the mutating methods from
CleanUp makes it easier to understand and reuse.
In its present state, CleanUp would be too cumbersome to adapt to cases
where multiple objects need to be released. Take for example this change
in swift-lldb:
https://github.com/apple/swift-lldb/pull/334/files#diff-6f474df750f75c8ba675f2a8408a5629R219
This change is simple to express with the new CleanUp, but not so simple
with the old version.
Differential Revision: https://reviews.llvm.org/D43662
llvm-svn: 325964
Summary:
The llvm function is equivalent to this one. Where possible I tried to
replace const char* with llvm::StringRef to avoid extra strlen
computations. In most places, I was able to track the c string back to
the ConstString it was created from.
I also create a test that verifies we are able to lookup names with
unicode characters, as a bug in the llvm compiler (it accidentally used
a different hash function) meant this was not working until recently.
This also removes the unused ExportTable class.
Reviewers: aprantl, davide
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D43596
llvm-svn: 325927
Summary:
The PC corresponding to the breakpoint was being calculated wrongly,
which was causing LLDB to never go past the first breakpoint, when
there was a second one adjacent to it.
Reviewers: clayborg, labath
Reviewed By: clayborg, labath
Subscribers: anajuliapc, alexandreyy, lbianc
Differential Revision: https://reviews.llvm.org/D43344
Patch by Leandro Lupori <leandro.lupori@gmail.com>.
llvm-svn: 325728
Summary:
The PowerPC64 ABI plugin was modified to:
- properly handle vector type return values
- implement support for struct/class return values
A refactoring in the code that handles return values was also performed, to make it possible to handle structs without repeating (when possible) code that handles its fields.
There was also an issue with CreateInstance(), that only created an instance in the first time it was called and then cached it in a static var. When restarting a process under LLDB's control, the ABI's process weak pointer would become null, and using it would result in a segmentation fault. This issue became more evident after the latest changes to PPC64 plugin, that now uses the process pointer to get the target byte order, making LLDB to seg fault when restarting a program. This was fixed by making CreateInstance() to always create a new ABI instance.
All of LLDB's ReturnValue tests are passing for PPC64le now. It should work for PPC64be too, although this was not tested.
Reviewers: labath, clayborg
Reviewed By: labath
Subscribers: lbianc, anajuliapc, llvm-commits, alexandreyy, nemanjai, kbarton
Differential Revision: https://reviews.llvm.org/D42468
Patch by Leandro Lupori <leandro.lupori@gmail.com>.
llvm-svn: 325324
Summary:
All the tests pass without hitting the situation mentioned in the FIXME, so,
per Aaron Smith's suggestion, this case will now return unconditionally.
Subscribers: sanjoy, mgorny, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43215
llvm-svn: 325188
Summary:
LLDB doesn't use this code, the code has no tests, and the code does suspicious
things like hashing pointers to strings instead of the strings themselves.
Subscribers: sanjoy, mgorny, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43202
llvm-svn: 324925
This patch makes LLDB's clang module cache path customizable via
settings set target.clang-modules-cache-path <path> and uses it in the
LLDB testsuite to reuse the same location inside the build directory
for LLDB and clang.
Differential Revision: https://reviews.llvm.org/D43099
llvm-svn: 324775