In order to keep SVNVersion.inc from being regenerated on every build, we need
to specify as a dependency a file that only changes when the VC state updates.
I previously just had .svn/entries, but that's only used by Subversion 1.6.
1.7 uses .svn/wc.db instead; prefer that if it's present.
(Thanks, Nico!)
llvm-svn: 222407
Now that LLVM's helper script GetSVN.cmake actually works consistently,
there's no reason not to use it. We avoid having to regenerate SVNVersion.inc
every time by marking it as dependent on Git's reflog or SVN's entries file.
This should end most of the issues of the AST format changing and breaking
old module files: CMake-Clang should now detect that the version changed just
like Autoconf-Clang has.
Based on r190557. Depends on LLVM r222391.
llvm-svn: 222393
Summary:
Make DiagnosticsEngine::takeClient return std::unique_ptr<>. Updated
callers to store conditional ownership using a pair of pointer and unique_ptr
instead of a pointer + bool. Updated code that temporarily registers clients to
use the non-owning registration (+ removed extra calls to takeClient).
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6294
llvm-svn: 222193
Remove flag parsing details from the public header.
Use SanitizerSet to represent the set of enabled sanitizers.
Cleanup the implementation: update the comments to
reflect reality, remove dead code.
No functionality change.
llvm-svn: 221968
This option was misleading because it looked like it enabled the
language feature of SEH (__try / __except), when this option was really
controlling which EH personality function to use. Mingw only supports
SEH and SjLj EH on x86_64, so we can simply do away with this flag.
llvm-svn: 221963
Get rid of ugly SanitizerOptions class thrust into LangOptions:
* Make SanitizeAddressFieldPadding a regular language option,
and rely on default behavior to initialize/reset it.
* Make SanitizerBlacklistFile a regular member LangOptions.
* Introduce the helper class "SanitizerSet" to represent the
set of enabled sanitizers and make it a member of LangOptions.
It is exactly the entity we want to cache and modify in CodeGenFunction,
for instance. We'd also be able to reuse SanitizerSet in
CodeGenOptions for storing the set of recoverable sanitizers,
and in the Driver to represent the set of sanitizers
turned on/off by the commandline flags.
No functionality change.
llvm-svn: 221653
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
This CPU definition is redundant. The Cortex-A9 is defined as
supporting multiprocessing extensions. Remove references to this CPU.
This CPU was recently removed from LLVM. See http://reviews.llvm.org/D6057
Change-Id: I62ae7cc656fcae54fbaefc4b6976e77e694a8678
llvm-svn: 221458
This patch simplifies how default target features are set for AMD bdver2
and bdver1. In particular, method 'getDefaultFeatures' now implements a
fallthrough from case 'CK_BDVER2' to case 'CK_BDVER1'.
That is because 'bdver2' has the same features available in bdver1 plus
BMI, FMA, F16C and TBM.
This patch also adds missing checks for predefined macros in test
predefined-arch-macros.c. In the case of BTVER2, the test now also checks
for F16C, BMI and PCLMUL. In the case of BDVER3 and BDVER4, the test now
also checks for the presence of FSGSBASE.
Differential Revision: http://reviews.llvm.org/D6134
llvm-svn: 221449
The most complex aspect of the convention is the handling of homogeneous
vector and floating point aggregates. Reuse the homogeneous aggregate
classification code that we use on PPC64 and ARM for this.
This convention also has a C mangling, and we apparently implement that
in both Clang and LLVM.
Reviewed By: majnemer
Differential Revision: http://reviews.llvm.org/D6063
llvm-svn: 221006
Now that we have initial support for VSX, we can begin adding
intrinsics for programmer access to VSX instructions. This patch
performs the necessary enablement in the front end, and tests it by
implementing intrinsics for minimum and maximum using the vector
double data type.
The main change in the front end is to no longer disallow "vector" and
"double" in the same declaration (lib/Sema/DeclSpec.cpp), but "vector"
and "long double" must still be disallowed. The new intrinsics are
accessed via vec_max and vec_min with changes in
lib/Headers/altivec.h. Note that for v4f32, we already access
corresponding VMX builtins, but with VSX enabled we should use the
forms that allow all 64 vector registers.
The new built-ins are defined in include/clang/Basic/BuiltinsPPC.def.
I've added a new test in test/CodeGen/builtins-ppc-vsx.c that is
similar to, but much smaller than, builtins-ppc-altivec.c. This
allows us to test VSX IR generation without duplicating CHECK lines
for the existing bazillion Altivec tests.
Since vector double is now legal when VSX is available, I've modified
the error message, and changed where we test for it and for vector
long double, since the target machine isn't visible in the old place.
This serendipitously removed a not-pertinent warning about 'long'
being deprecated when used with 'vector', when "vector long double" is
encountered and we just want to issue an error. The existing tests
test/Parser/altivec.c and test/Parser/cxx-altivec.cpp have been
updated accordingly, and I've added test/Parser/vsx.c to verify that
"vector double" is now legitimate with VSX enabled.
There is a companion patch for LLVM.
llvm-svn: 220989
SanitizerOptions is not even a POD now, so having global variable of
this type, is not nice. Instead, provide a regular constructor and clear()
method, and let each CodeGenFunction has its own copy of SanitizerOptions
it uses.
llvm-svn: 220920
Wire it through everywhere we have support for fastcall, essentially.
This allows us to parse the MSVC "14" CTP headers, but we will
miscompile them because LLVM doesn't support __vectorcall yet.
Reviewed By: Aaron Ballman
Differential Revision: http://reviews.llvm.org/D5808
llvm-svn: 220573
This allows a module to specify that it logically contains a file, but that
said file is non-modular and intended for textual inclusion. This allows
layering checks to work properly in the presence of such files.
llvm-svn: 220448
When SanitizerBlacklist decides if the SourceLocation is blacklisted,
we need to first turn it into a SpellingLoc before fetching the filename
and scanning "src:" entries. Otherwise we will fail to fecth the
correct filename for function definitions coming from macro expansion.
llvm-svn: 220403
This is long-since overdue, and matches GCC 5.0. This should also be
backwards-compatible, because we already supported all of C11 as an extension
in C99 mode.
llvm-svn: 220244
This commit changes the way we blacklist global variables in ASan.
Now the global is excluded from instrumentation (either regular
bounds checking, or initialization-order checking) if:
1) Global is explicitly blacklisted by its mangled name.
This part is left unchanged.
2) SourceLocation of a global is in blacklisted source file.
This changes the old behavior, where instead of looking at the
SourceLocation of a variable we simply considered llvm::Module
identifier. This was wrong, as identifier may not correspond to
the file name, and we incorrectly disabled instrumentation
for globals coming from #include'd files.
3) Global is blacklisted by type.
Now we build the type of a global variable using Clang machinery
(QualType::getAsString()), instead of llvm::StructType::getName().
After this commit, the active users of ASan blacklist files
may have to revisit them (this is a backwards-incompatible change).
llvm-svn: 220097
This commit changes the way we blacklist functions in ASan, TSan,
MSan and UBSan. We used to treat function as "blacklisted"
and turned off instrumentation in it in two cases:
1) Function is explicitly blacklisted by its mangled name.
This part is not changed.
2) Function is located in llvm::Module, whose identifier is
contained in the list of blacklisted sources. This is completely
wrong, as llvm::Module may not correspond to the actual source
file function is defined in. Also, function can be defined in
a header, in which case user had to blacklist the .cpp file
this header was #include'd into, not the header itself.
Such functions could cause other problems - for instance, if the
header was included in multiple source files, compiled
separately and linked into a single executable, we could end up
with both instrumented and non-instrumented version of the same
function participating in the same link.
After this change we will make blacklisting decision based on
the SourceLocation of a function definition. If a function is
not explicitly defined in the source file, (for example, the
function is compiler-generated and responsible for
initialization/destruction of a global variable), then it will
be blacklisted if the corresponding global variable is defined
in blacklisted source file, and will be instrumented otherwise.
After this commit, the active users of blacklist files may have
to revisit them. This is a backwards-incompatible change, but
I don't think it's possible or makes sense to support the
old incorrect behavior.
I plan to make similar change for blacklisting GlobalVariables
(which is ASan-specific).
llvm-svn: 219997
Summary:
The general approach is to add extra paddings after every field
in AST/RecordLayoutBuilder.cpp, then add code to CTORs/DTORs that poisons the paddings
(CodeGen/CGClass.cpp).
Everything is done under the flag -fsanitize-address-field-padding.
The blacklist file (-fsanitize-blacklist) allows to avoid the transformation
for given classes or source files.
See also https://code.google.com/p/address-sanitizer/wiki/IntraObjectOverflow
Test Plan: run SPEC2006 and some of the Chromium tests with -fsanitize-address-field-padding
Reviewers: samsonov, rnk, rsmith
Reviewed By: rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D5687
llvm-svn: 219961
The final goal is to get rid of all the rest overloads that
accept LLVM objects (llvm::Function and llvm::GlobalVariable),
and pass in source-level entities instead.
llvm-svn: 219937
Soon we'll need to have access to blacklist before the CodeGen
phase (see http://reviews.llvm.org/D5687), so parse and construct
the blacklist earlier.
llvm-svn: 219857
This change moves SanitizerBlacklist.h from lib/CodeGen
to public Clang headers in include/clang/Basic. SanitizerBlacklist
is currently only used in CodeGen to decide which functions/modules
should be instrumented, but this will soon change as ASan will
optionally modify class layouts during AST construction
(http://reviews.llvm.org/D5687). We need blacklist machinery
to be available at this point.
llvm-svn: 219840
Thumb1 has legitimate reasons for preferring 32-bit alignment of types
i1/i8/i16, since the 16-bit encoding of "add rD, sp, #imm" requires #imm to be
a multiple of 4. However, this is a trade-off betweem code size and RAM usage;
the DataLayout string is not the best place to represent it even if desired.
So this patch removes the extra Thumb requirements, hopefully making ARM and
Thumb completely compatible in this respect.
llvm-svn: 219735
Before, ARM and Thumb mode code had different preferred alignments, which could
lead to some rather unexpected results. There's justification for reducing it
from the default 64-bits (wasted space), but I don't think there is for going
below 32-bits.
There's no actual ABI change here, just to reassure people.
llvm-svn: 219720
The current VSX feature for PowerPC specifies availability of the VSX
instructions added with the 2.06 architecture version. With 2.07, the
architecture adds new instructions to both the Category:Vector and
Category:VSX instruction sets. Additionally, unaligned vector storage
operations have improved performance.
This patch adds a feature to provide access to the new instructions
and performance capabilities of Power8. For compatibility with GCC,
the feature is controlled via a new -mpower8-vector switch, and the
feature causes the __POWER8_VECTOR__ builtin define to be generated by
the preprocessor.
There is a companion patch for llvm being committed at the same time.
llvm-svn: 219502
Includes parsing and semantic analysis for 'omp teams' directive support from OpenMP 4.0. Adds additional analysis to 'omp target' directive with 'omp teams' directive.
llvm-svn: 219385