Previously we used vptestmd, but the scheduling data for SKX says vpmovq2m/vpmovd2m is lower latency. We already used vpmovb2m/vpmovw2m for byte/word truncates. So this is more consistent anyway.
llvm-svn: 325534
When creating high MachineMemOperand for MSTORE/MLOAD we supply
it with the original PointerInfo, while the pointer itself had been incremented.
The patch adds the proper offset to the PointerInfo.
llvm-svn: 325135
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
We can use the same input for both operands to get a free compare with zero.
We already use this trick in a couple places where we explicitly create PTESTM with the same input twice. This generalizes it.
I'm hoping to remove the ISD opcodes and move this to isel patterns like we do for scalar cmp/test.
llvm-svn: 323605
Summary:
There are few oddities that occur due to v1i1, v8i1, v16i1 being legal without v2i1 and v4i1 being legal when we don't have VLX. Particularly during legalization of v2i32/v4i32/v2i64/v4i64 masked gather/scatter/load/store. We end up promoting the mask argument to these during type legalization and then have to widen the promoted type to v8iX/v16iX and truncate it to get the element size back down to v8i1/v16i1 to use a 512-bit operation. Since need to fill the upper bits of the mask we have to fill with 0s at the promoted type.
It would be better if we could just have the v2i1/v4i1 types as legal so they don't undergo any promotion. Then we can just widen with 0s directly in a k register. There are no real v4i1/v2i1 instructions anyway. Everything is done on a larger register anyway.
This also fixes an issue that we couldn't implement a masked vextractf32x4 from zmm to xmm properly.
We now have to support widening more compares to 512-bit to get a mask result out so new tablegen patterns got added.
I had to hack the legalizer for widening the operand of a setcc a bit so it didn't try create a setcc returning v4i32, extract from it, then try to promote it using a sign extend to v2i1. Now we create the setcc with v4i1 if the original setcc's result type is v2i1. Then extract that and don't sign extend it at all.
There's definitely room for improvement with some follow up patches.
Reviewers: RKSimon, zvi, guyblank
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41560
llvm-svn: 321967
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
Added TESTM and TESTNM to the list of instructions that already zeroing unused upper bits
and does not need the redundant shift left and shift right instructions afterwards.
Added a pattern for TESTM and TESTNM in iselLowering, so now icmp(neq,and(X,Y), 0) goes folds into TESTM
and icmp(eq,and(X,Y), 0) goes folds into TESTNM
This commit is a preparation for lowering the test and testn X86 intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D38732
llvm-svn: 317465
Ideally we'd be able to emit the SUBREG_TO_REG without the explicit register->register move, but we'd need to be sure the producing operation would select something that guaranteed the upper bits were already zeroed.
llvm-svn: 312450
There's no reason to switch instructions with and without DQI. It just creates extra isel patterns and test divergences.
There is however value in enabling the masked version of the instructions with DQI.
This required introducing some new multiclasses to enabling this splitting.
Differential Revision: https://reviews.llvm.org/D36661
llvm-svn: 311091
[X86][AVX512] Improve lowering of AVX512 compare intrinsics (remove redundant shift left+right instructions).
AVX512 compare instructions return v*i1 types.
In cases where the number of elements in the returned value are less than 8, clang adds zeroes to get a mask of v8i1 type.
Later on it's replaced with CONCAT_VECTORS, which then is lowered to many DAG nodes including insert/extract element and shift right/left nodes.
The fact that AVX512 compare instructions put the result in a k register and zeroes all its upper bits allows us to remove the extra nodes simply by copying the result to the required register class.
When lowering, identify these cases and transform them into an INSERT_SUBVECTOR node (marked legal), then catch this pattern in instructions selection phase and transform it into one avx512 cmp instruction.
Differential Revision: https://reviews.llvm.org/D33188
llvm-svn: 306402
AVX512 compare instructions return v*i1 types.
In cases where the number of elements in the returned value are less than 8, clang adds zeroes to get a mask of v8i1 type.
Later on it's replaced with CONCAT_VECTORS, which then is lowered to many DAG nodes including insert/extract element and shift right/left nodes.
The fact that AVX512 compare instructions put the result in a k register and zeroes all its upper bits allows us to remove the extra nodes simply by copying the result to the required register class.
When lowering, identify these cases and transform them into an INSERT_SUBVECTOR node (marked legal), then catch this pattern in instructions selection phase and transform it into one avx512 cmp instruction.
Differential Revision: https://reviews.llvm.org/D33188
llvm-svn: 305465
We've had several bugs(PR32256, PR32241) recently that resulted from usages of AH/BH/CH/DH either before or after a copy to/from a mask register.
This ultimately occurs because we create COPY_TO_REGCLASS with VK1 and GR8. Then in CopyToFromAsymmetricReg in X86InstrInfo we find a 32-bit super register for the GR8 to emit the KMOV with. But as these tests are demonstrating, its possible for the GR8 register to be a high register and we end up doing an accidental extra or insert from bits 15:8.
I think the best way forward is to stop making copies directly between mask registers and GR8/GR16. Instead I think we should restrict to only copies between mask registers and GR32/GR64 and use EXTRACT_SUBREG/INSERT_SUBREG to handle the conversion from GR32 to GR16/8 or vice versa.
Unfortunately, this complicates fastisel a bit more now to create the subreg extracts where we used to create GR8 copies. We can probably make a helper function to bring down the repitition.
This does result in KMOVD being used for copies when BWI is available because we don't know the original mask register size. This caused a lot of deltas on tests because we have to split the checks for KMOVD vs KMOVW based on BWI.
Differential Revision: https://reviews.llvm.org/D30968
llvm-svn: 298928
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
Implemented widening (v2f32) and splitting (v16f64).
On splitting, I use "popcnt" to calculate memory increment.
More type legalization work will come in the next patches.
llvm-svn: 287761
2 new intrinsics covering AVX-512 compress/expand functionality.
This implementation includes syntax, DAG builder, operation lowering and tests.
Does not include: handling of illegal data types, codegen prepare pass and the cost model.
llvm-svn: 285876