extracts a function to handle the emission of the diagnostic separately
from the walking over the set of uninitialized uses.
Also updates the naming used within this extracted function to be a bit
more consistent with the rest of Clang's naming patterns.
The next step will be breaking this apart so that we can go through
different functions rather than tracking so many boolean variables.
llvm-svn: 128898
int x = x;
GCC disables its warnings on this construct as a way of indicating that
the programmer intentionally wants the variable to be uninitialized.
Only the warning on the initializer is turned off in this iteration.
This makes the code a lot more ugly, but starts commenting the
surprising behavior here. This is a WIP, I want to refactor it
substantially for clarity, and to determine whether subsequent warnings
should be suppressed or not.
llvm-svn: 128894
I think this moves the code in the desired direction of the new style
recommendations (and style conventional in Clang), but if anyone prefers
the previous style, or has other suggestions just chime in and I'll
follow up.
llvm-svn: 128878
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
location into a TemplateSpecializationTypeLoc. These were found using
a hand-written program to inspect every source location in
TemplateSpecializationTypeLocs and Valgrind. I don't know of any way to
test them in Clang's existing test suite sadly.
Example code that triggers the ElaboratedType case:
template <typename T> struct X1 {
template <typename U> struct X1_1 {
int x;
};
};
template <typename T, typename U> struct X2 {
typename X1<T>::template X1_1<U> B;
};
X2<char, int> x2;
The other fix was simply spotted by inspection. I audited all constructions of
[Dependent]TemplateSpecializationTypeLocs in TreeTransform.h, and the rest set
the TemplateNameLoc properly.
llvm-svn: 128702
when the resolution took place due to a single template specialization
being named with an explicit template argument list. In this case, the
"resolution" doesn't take into account the target type at all, and
therefore can take place for functions, static member functions, and
*non-static* member functions. The latter weren't being properly checked
and their proper form enforced in this scenario. We now do so.
The result of this last form slipping through was some confusing logic
in IsStandardConversion handling of these resolved address-of
expressions which eventually exploded in an assert. Simplify this logic
a bit and add some more aggressive asserts to catch improperly formed
expressions getting into this routine.
Finally add systematic testing of member functions, both static and
non-static, in the various forms they can take. One of these is
essentially PR9563, and this commit fixes the crash in that PR. However,
the diagnostics for this are still pretty terrible. We at least are now
accepting the correct constructs and rejecting the invalid ones rather
than accepting invalid or crashing as before.
llvm-svn: 128456
This is basically the same idea as the warning on uninitialized uses of
fields within an initializer list. As such, it is on by default and
under -Wuninitialized.
Original patch by Richard Trieu, with some massaging from me on the
wording and grouping of the diagnostics.
llvm-svn: 128376
platform implies default visibility. To achieve these, refactor our
lookup of explicit visibility so that we search for both an explicit
VisibilityAttr and an appropriate AvailabilityAttr, favoring the
VisibilityAttr if it is present.
llvm-svn: 128336
AttributeLists do not accumulate over the lifetime of parsing, but are
instead reused. Also make the arguments array not require a separate
allocation, and make availability attributes store their stuff in
augmented memory, too.
llvm-svn: 128209
string itself lives longer than the DelayedDiagnostic. Fixes a recent
use-after-free regression due to my availability attribute work.
llvm-svn: 128148
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
This rename serves two purposes:
- It reflects the actual functionality of this analysis.
- We will have more than one reachability analysis.
llvm-svn: 127930
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
overload, so that we actually do the resolution for full expressions
and emit more consistent, useful diagnostics. Also fixes an IRGen
crasher, where Sema wouldn't diagnose a resolvable bound member
function template-id used in a full-expression (<rdar://problem/9108698>).
llvm-svn: 127747
operands to a binary expression; it doesn't make sense in all
contexts. The right answer would be to see if the user forgot at ().
Fixes <rdar://problem/9136502>.
llvm-svn: 127740
forward-looking "goto" statement, make sure to insert it *after* the
last declaration in the identifier resolver's declaration chain that
is either outside of the function/block/method's scope or that is
declared in that function/block/method's specific scope. Previously,
we could end up inserting the label ahead of declarations in inner
scopes, confusing C++ name lookup.
Fixes PR9491/<rdar://problem/9140426> and <rdar://problem/9135994>.
Note that the crash-on-invalid PR9495 is *not* fixed. That's a
separate issue.
llvm-svn: 127737
declaration as this results in a confusing error message,
instead of message related to missing property declaration.
// rdar://9106929
llvm-svn: 127682
cannot yet be resolved, be sure to push the new label declaration into
the right place within the identifier chain. Otherwise, name lookup in
C++ gets confused when searching for names that are lexically closer
than the label. Fixes PR9463.
llvm-svn: 127623
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
enumeration type to another in C, classify enumeration constants as if
they had the type of their enclosing enumeration. Fixes
<rdar://problem/9116337>.
llvm-svn: 127514
in the LLVM test suite, this function was consuming 7.4% of -fsyntax-only time. This change fixes this issue
by delaying the check that the warning would be issued within a system macro by as long as possible. The
main negative of this change is now the logic for this check is done in multiple places in this function instead
of just in one place up front.
llvm-svn: 127425
Instead, create a small set of Stmt* -> CFGBlock* mappings during CFG construction for only the statements we care about
relating to the diagnostics we want to check for reachability.
llvm-svn: 127396
diagnostic. Also, these attributes are commonly written with macros which we
actually pre-define, so instead of expanding the macro location, refer to the
instantiation location and name it using the macro loc.
llvm-svn: 127219
of a C++0x inline namespace within enclosing namespaces, as noted in
C++0x [namespace.def]p8.
Fixes <rdar://problem/9006349>, a libc++ failure where Clang was
rejected an explicit specialization of std::swap (since libc++ puts it
into an inline, versioned namespace std::__1).
llvm-svn: 127162
to set the source-location information for the template arguments to
the *transformed* source-location information, not the original
source-location information. Fixes <rdar://problem/8986308> (a libc++
SFINAE issue) and the Boost.Polygon failure.
llvm-svn: 127150
declaration because of interesting ordering dependencies while
instantiating a class template or member class thereof. Complain,
rather than asserting (+Asserts) or silently rejecting the code
(-Asserts).
Fixes the crash-on-invalid in PR8965.
llvm-svn: 127129
conversion function when we're binding the result to a reference, drop
cv-qualifiers on the type we're referring to, since we should be
deducing a type that can be adjusted (via cv-qualification) to the
requested type. Fixes PR9336, and the remaining Boost.Assign failure.
llvm-svn: 127117
template name as the result of substitution. The qualifier is handled
separately by the tree transformer, so we would end up in an
inconsistent state.
This is actually the last bit of PR9016, and possibly also fixes
PR8965. It takes Boost.Icl from "epic fail" down to a single failure.
llvm-svn: 127108
template (not a specialization!), use the "injected" function template
arguments, which correspond to the template parameters of the function
template. This is required when substituting into the default template
parameters of template template parameters within a function template.
Fixes PR9016.
llvm-svn: 127092
transform the type that replaces the template type parameter. In the
vast majority of cases, there's nothing to do, because most template
type parameters are replaced with something non-dependent that doesn't
need further transformation. However, when we're dealing with the
default template arguments of template template parameters, we might
end up replacing a template parameter (of the template template
parameter) with a template parameter of the enclosing template.
This addresses part of PR9016, but not within function
templates. That's a separate issue.
llvm-svn: 127091
too. Fixes PR7900.
While I'm in this area, improve the diagnostic when the type being
destroyed doesn't match either of the types we found.
llvm-svn: 127041
to cope with non-type templates by providing appropriate
errors. Previously, we would either assert, crash, or silently build a
dependent type when we shouldn't. Fixes PR9226.
llvm-svn: 127037
to find the instantiated declaration within a template instantiation
fails to do so. It's likely that the original instantiation got
dropped due to instantiation failures, which doesn't actually break
the invariants of the AST. This eliminates a number of
crash-on-invalid failures, e.g., PR9300.
llvm-svn: 127030
DependentTemplateSpecializationType during tree transformation, retain
the NestedNameSpecifierLoc as it was used to translate the template
name, rather than reconstructing it from the template name.
Fixes PR9401.
llvm-svn: 127015
DeclContext once we've created it. This mirrors what we do for
function parameters, where the parameters start out with
translation-unit context and then are adopted by the appropriate
DeclContext when it is created. Also give template parameters public
access and make sure that they don't show up for the purposes of name
lookup.
Fixes PR9400, a regression introduced by r126920, which implemented
substitution of default template arguments provided in template
template parameters (C++ core issue 150).
How on earth could the DeclContext of a template parameter affect the
handling of default template arguments?
I'm so glad you asked! The link is
Sema::getTemplateInstantiationArgs(), which determines the outer
template argument lists that correspond to a given declaration. When
we're instantiating a default template argument for a template
template parameter within the body of a template definition (not it's
instantiation, per core issue 150), we weren't getting any outer
template arguments because the context of the template template
parameter was the translation unit. Now that the context of the
template template parameter is its owning template, we get the
template arguments from the injected-class-name of the owning
template, so substitution works as it should.
llvm-svn: 127004
template <class T> void foo();
template <> void foo<int>(); /* Spec 1 */
template <> void foo<int>(); /* Spec 2 */
If we look at the main location of the first explicit specialization (Spec 1) it can be seen that it points to the name of the *second* explicit specialization (Spec 2), which is a redeclaration of Spec1.
Hence, the source range obtained for Spec1 is not only inaccurate, but also invalid (the end location comes before the start location).
llvm-svn: 127002
1) When we do an instantiation of the injected-class-name type,
provide a proper source location. This is just plain good hygiene.
2) When we're building a NestedNameSpecifierLoc from a CXXScopeSpec,
only return an empty NestedNameSpecifierLoc if there's no
representation.
Both problems contributed to the horrible test case in PR9390 that I
couldn't reduce down to something palatable.
llvm-svn: 126961
parameter, save the instantiated default template arguments along with
the explicitly-specified template argument list. That way, we prefer
the default template template arguments corresponding to the template
template parameter rather than those of its template template argument.
This addresses the likely direction of C++ core issue 150, and fixes
PR9353/<rdar://problem/9069136>, bringing us closer to the behavior of
EDG and GCC.
llvm-svn: 126920
TreeTransform::TransformDependentTemplateSpecializationType() with
poor source-location information handling. All of the
CXXScopeSpec::MakeTrivial() and
NestedNameSpecifierLocBuilder::MakeTrivial() callers actually make
sense now.
llvm-svn: 126856
source-location-preserving
TreeTransform::TranformNestedNameSpecifierLoc(). No functionality
change: the victim had no callers (that themselves had callers) anyway.
llvm-svn: 126853
template arguments. I believe that this is the last place in the AST
where we were storing a source range for a nested-name-specifier
rather than a proper nested-name-specifier location structure. (Yay!)
There is still a lot of cleanup to do in the TreeTransform, which
doesn't take advantage of nested-name-specifiers with source-location
information everywhere it could.
llvm-svn: 126844
of an Objective-C method to be overridden on a case-by-case basis. This
is a higher-level tool than ns_returns_retained &c.; it lets users specify
that not only does a method have different retain/release semantics, but
that it semantically acts differently than one might assume from its name.
This in turn is quite useful to static analysis.
llvm-svn: 126839
of an expansion, and we have a paramameter that is not a parameter
pack, don't suppress substitution of parameter packs within this
context.
llvm-svn: 126819
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
template specialization types. There are still a few rough edges to
clean up with some of the parser actions dropping
nested-name-specifiers too early.
llvm-svn: 126776
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
diagnose ignored qualifiers on return types, only assume that there is
a pointer chunk if the type is *structurally* a pointer type, not if
it's a typedef of a pointer type. Fixes PR9328/<rdar://problem/9055428>.
llvm-svn: 126751
a dependent template name rather than (indirectly and incorrectly)
trying to determine whether we can compute a context for the
nested-name-specifier. Fixes a GCC testsuite regression,
<rdar://problem/9068589>.
llvm-svn: 126749
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
possible for these to show up due to metaprogramming both in unevaluated
contexts and compile-time dead branches.
Those aren't the bugs we're looking for.
llvm-svn: 126739
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
source-location information into a NestedNameSpecifierLocBuilder
class, which lives within the AST library and centralize all knowledge
of the format of nested-name-specifier location information here.
No functionality change.
llvm-svn: 126716
source-location information. We don't actually preserve this
information in any of the resulting TypeLocs (yet), so it doesn't
matter.
llvm-svn: 126693