to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This addresses http://llvm.org/PR36790.
This change allows the XRay Basic Mode implementation to use the
string-based initialization routine provided through
`__xray_log_init_mode(...)`. In the process, we've also deprecated some
flags defined for the `XRAY_OPTIONS` environment variable.
We then introduce another environment variable that can control the XRay
Basic Mode implementation through `XRAY_BASIC_OPTIONS`.
We also rename files from `xray_inmemory_log` to `xray_basic_logging` to
be more in line with the mode implementation.
Depends on D46174.
Reviewers: echristo, kpw, pelikan, eizan
Reviewed By: kpw
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D46246
llvm-svn: 331507
Summary:
In this chage we add support for the string-based configuration
mechanism for configuring FDR mode.
We deprecate most of the `xray_fdr_log_*` flags that are set with the
`XRAY_OPTIONS` environment variable. Instead we make the FDR
implementation take defaults from the `XRAY_FDR_OPTIONS` environment
variable, and use the flags defined in `xray_fdr_flags.{h,cc,inc}` for
the options we support.
This change addresses http://llvm.org/PR36790.
Depends on D46173.
Reviewers: eizan, pelikan, kpw, echristo
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D46174
llvm-svn: 331506
Summary:
- Enabling the build.
- Using assembly for the cpuid parts.
- Using thr_self FreeBSD call to get the thread id
Patch by: David CARLIER
Reviewers: dberris, rnk, krytarowski
Reviewed By: dberris, krytarowski
Subscribers: emaste, stevecheckoway, nglevin, srhines, kubamracek, dberris, mgorny, krytarowski, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43278
llvm-svn: 325240
Summary:
Before this change, XRay would conservatively patch sections of the code
one sled at a time. Upon testing/profiling, this turns out to take an
inordinate amount of time and cycles. For an instrumented clang binary,
the cycles spent both in the patching/unpatching routine constituted 4%
of the cycles -- this didn't count the time spent in the kernel while
performing the mprotect calls in quick succession.
With this change, we're coalescing the number of calls to mprotect from
being linear to the number of instrumentation points, to now being a
lower constant when patching all the sleds through `__xray_patch()` or
`__xray_unpatch()`. In the case of calling `__xray_patch_function()` or
`__xray_unpatch_function()` we're now doing an mprotect call once for
all the sleds for that function (reduction of at least 2x calls to
mprotect).
Reviewers: kpw, eizan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41153
llvm-svn: 320664
Summary:
This change allows for registration of multiple logging implementations
through a central mechanism in XRay, mapping an implementation to a
"mode". Modes are strings that are used as keys to determine which
implementation to install through a single API. This mechanism allows
users to choose which implementation to install either from the
environment variable 'XRAY_OPTIONS' with the `xray_mode=` flag, or
programmatically using the `__xray_select_mode(...)` function.
Here, we introduce two API functions for the XRay logging:
__xray_log_register_mode(Mode, Impl): Associates an XRayLogImpl to a
string Mode. We can only have one implementation associated with a given
Mode.
__xray_log_select_mode(Mode): Finds the associated Impl for Mode and
installs it as if by calling `__xray_set_log_impl(...)`.
Along with these changes, we also deprecate the xray_naive_log and
xray_fdr_log flags and encourage users to instead use the xray_mode
flag.
Reviewers: kpw, dblaikie, eizan, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40703
llvm-svn: 319759
This change is the first in a series of changes to get the XRay runtime
building on macOS. This first allows us to build the minimal parts of
XRay to get us started on supporting macOS development. These include:
- CMake changes to allow targeting x86_64 initially.
- Allowing for building the initialisation routines without
`.preinit_array` support.
- Use __sanitizer::SleepForMillis() to work around the lack of
clock_nanosleep on macOS.
- Deprecate the xray_fdr_log_grace_period_us flag, and introduce
the xray_fdr_log_grace_period_ms flag instead, to use
milliseconds across platforms.
Reviewers: kubamracek
Subscribers: llvm-commits, krytarowski, nglevin, mgorny
Differential Review: https://reviews.llvm.org/D39114
llvm-svn: 319165
Summary:
Before this patch, XRay's basic (naive mode) logging would be
initialised and installed in an adhoc manner. This patch ports the
implementation of the basic (naive mode) logging implementation to use
the common XRay framework.
We also make the following changes to reduce the variance between the
usage model of basic mode from FDR (flight data recorder) mode:
- Allow programmatic control of the size of the buffers dedicated to
per-thread records. This removes some hard-coded constants and turns
them into runtime-controllable flags and through an Options
structure.
- Default the `xray_naive_log` option to false. For now, the only way
to start basic mode is to set the environment variable, or set the
default at build-time compiler options. Because of this change we've
had to update a couple of tests relying on basic mode being always
on.
- Removed the reliance on a non-trivially destructible per-thread
resource manager. We use a similar trick done in D39526 to use
pthread_key_create() and pthread_setspecific() to ensure that the
per-thread cleanup handling is performed at thread-exit time.
We also radically simplify the code structure for basic mode, to move
most of the implementation in the `__xray` namespace.
Reviewers: pelikan, eizan, kpw
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40164
llvm-svn: 318734
Summary:
Before this change, the FDR mode implementation relied on at thread-exit
handling to return buffers back to the (global) buffer queue. This
introduces issues with the initialisation of the thread_local objects
which, even through the use of pthread_setspecific(...) may eventually
call into an allocation function. Similar to previous changes in this
line, we're finding that there is a huge potential for deadlocks when
initialising these thread-locals when the memory allocation
implementation is also xray-instrumented.
In this change, we limit the call to pthread_setspecific(...) to provide
a non-null value to associate to the key created with
pthread_key_create(...). While this doesn't completely eliminate the
potential for the deadlock(s), it does allow us to still clean up at
thread exit when we need to. The change is that we don't need to do more
work when starting and ending a thread's lifetime. We also have a test
to make sure that we actually can safely recycle the buffers in case we
end up re-using the buffer(s) available from the queue on multiple
thread entry/exits.
This change cuts across both LLVM and compiler-rt to allow us to update
both the XRay runtime implementation as well as the library support for
loading these new versions of the FDR mode logging. Version 2 of the FDR
logging implementation makes the following changes:
* Introduction of a new 'BufferExtents' metadata record that's outside
of the buffer's contents but are written before the actual buffer.
This data is associated to the Buffer handed out by the BufferQueue
rather than a record that occupies bytes in the actual buffer.
* Removal of the "end of buffer" records. This is in-line with the
changes we described above, to allow for optimistic logging without
explicit record writing at thread exit.
The optimistic logging model operates under the following assumptions:
* Threads writing to the buffers will potentially race with the thread
attempting to flush the log. To avoid this situation from occuring,
we make sure that when we've finalized the logging implementation,
that threads will see this finalization state on the next write, and
either choose to not write records the thread would have written or
write the record(s) in two phases -- first write the record(s), then
update the extents metadata.
* We change the buffer queue implementation so that once it's handed
out a buffer to a thread, that we assume that buffer is marked
"used" to be able to capture partial writes. None of this will be
safe to handle if threads are racing to write the extents records
and the reader thread is attempting to flush the log. The optimism
comes from the finalization routine being required to complete
before we attempt to flush the log.
This is a fairly significant semantics change for the FDR
implementation. This is why we've decided to update the version number
for FDR mode logs. The tools, however, still need to be able to support
older versions of the log until we finally deprecate those earlier
versions.
Reviewers: dblaikie, pelikan, kpw
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D39526
llvm-svn: 318733
Summary:
"short" is defined as an xray flag, and buffer rewinding happens for both exits
and tail exits.
I've made the choice to seek backwards finding pairs of FunctionEntry, TailExit
record pairs and erasing them if the FunctionEntry occurred before exit from the
currently exiting function. This is a compromise so that we don't skip logging
tail calls if the function that they call into takes longer our duration.
This works by counting the consecutive function and function entry, tail exit
pairs that proceed the current point in the buffer. The buffer is rewound to
check whether these entry points happened recently enough to be erased.
It is still possible we will omit them if they call into a child function that
is not instrumented which calls a fast grandchild that is instrumented before
doing other processing.
Reviewers: pelikan, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31345
llvm-svn: 299629
Summary:
Currently, we assume that applications built with XRay would like to
have the instrumentation sleds patched before main starts. This patch
changes the default so that we do not patch the instrumentation sleds
before main. This default is more helpful for deploying applications in
environments where changing the current default is harder (i.e. on
remote machines, or work-pool-like systems).
This default (not to patch pre-main) makes it easier to selectively run
applications with XRay instrumentation enabled, than with the current
state.
Reviewers: echristo, timshen
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30396
llvm-svn: 296445
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 293015
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 290852
Depends on D21612 which implements the building blocks for the compiler-rt
implementation of the XRay runtime. We use a naive in-memory log of fixed-size
entries that get written out to a log file when the buffers are full, and when
the thread exits.
This implementation lays some foundations on to allowing for more complex XRay
records to be written to the log in subsequent changes. It also defines the format
that the function call accounting tool in D21987 will start building upon.
Once D21987 lands, we should be able to start defining more tests using that tool
once the function call accounting tool becomes part of the llvm distribution.
Reviewers: echristo, kcc, rnk, eugenis, majnemer, rSerge
Subscribers: sdardis, rSerge, dberris, tberghammer, danalbert, srhines, majnemer, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D21982
llvm-svn: 279805
Summary:
This is a fixed-up version of D21612, to address failure identified post-commit.
Original commit description:
This patch implements the initialisation and patching routines for the XRay runtime, along with the necessary trampolines for function entry/exit handling. For now we only define the basic hooks for allowing an implementation to define a handler that gets run on function entry/exit. We expose a minimal API for controlling the behaviour of the runtime (patching, cleanup, and setting the handler to invoke when instrumenting).
Fixes include:
- Gating XRay build to only Linux x86_64 and with the right dependencies in case it is the only library being built
- Including <cstddef> to fix std::size_t issue
Reviewers: kcc, rnk, echristo
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D22611
llvm-svn: 276251
and also the follow-up "[xray] Only build xray on Linux for now"
Two build errors were reported on the llvm-commits list:
[ 88%] Building CXX object lib/xray/CMakeFiles/clang_rt.xray-x86_64.dir/xray_flags.cc.o
/mnt/b/sanitizer-buildbot1/sanitizer-x86_64-linux/build/llvm/projects/compiler-rt/lib/xray/xray_init.cc:23:10: fatal error: 'llvm/Support/ELF.h' file not found
#include "llvm/Support/ELF.h"
^
and
In file included from /w/src/llvm.org/projects/compiler-rt/lib/xray/xray_interface.cc:16:
/w/src/llvm.org/projects/compiler-rt/lib/xray/xray_interface_internal.h:36:8: error:
no type named 'size_t' in namespace 'std'
std::size_t Entries;
~~~~~^
llvm-svn: 276186
Summary:
This patch implements the initialisation and patching routines for the XRay runtime, along with the necessary trampolines for function entry/exit handling. For now we only define the basic hooks for allowing an implementation to define a handler that gets run on function entry/exit. We expose a minimal API for controlling the behaviour of the runtime (patching, cleanup, and setting the handler to invoke when instrumenting).
Depends on D19904
Reviewers: echristo, kcc, rnk
Subscribers: rnk, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D21612
llvm-svn: 276117