A line number doesn't make much sense if you don't say where it's
from. Add a verifier check for this and update some tests that had
bogus debug info.
llvm-svn: 295516
Resubmit -r295314 with PowerPC and AMDGPU tests updated.
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 295336
Lay out trellis-shaped CFGs optimally.
A trellis of the shape below:
A B
|\ /|
| \ / |
| X |
| / \ |
|/ \|
C D
would be laid out A; B->C ; D by the current layout algorithm. Now we identify
trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an
increasing number of predecessors. A trellis is a a group of 2 or more
predecessor blocks that all have the same successors.
because of this we can tail duplicate to extend existing trellises.
As an example consider the following CFG:
B D F H
/ \ / \ / \ / \
A---C---E---G---Ret
Where A,C,E,G are all small (Currently 2 instructions).
The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret.
The current code will copy C into B, E into D and G into F and yield the layout
A,C,B(C),E,D(E),F(G),G,H,ret
define void @straight_test(i32 %tag) {
entry:
br label %test1
test1: ; A
%tagbit1 = and i32 %tag, 1
%tagbit1eq0 = icmp eq i32 %tagbit1, 0
br i1 %tagbit1eq0, label %test2, label %optional1
optional1: ; B
call void @a()
br label %test2
test2: ; C
%tagbit2 = and i32 %tag, 2
%tagbit2eq0 = icmp eq i32 %tagbit2, 0
br i1 %tagbit2eq0, label %test3, label %optional2
optional2: ; D
call void @b()
br label %test3
test3: ; E
%tagbit3 = and i32 %tag, 4
%tagbit3eq0 = icmp eq i32 %tagbit3, 0
br i1 %tagbit3eq0, label %test4, label %optional3
optional3: ; F
call void @c()
br label %test4
test4: ; G
%tagbit4 = and i32 %tag, 8
%tagbit4eq0 = icmp eq i32 %tagbit4, 0
br i1 %tagbit4eq0, label %exit, label %optional4
optional4: ; H
call void @d()
br label %exit
exit:
ret void
}
here is the layout after D27742:
straight_test: # @straight_test
; ... Prologue elided
; BB#0: # %entry ; A (merged with test1)
; ... More prologue elided
mr 30, 3
andi. 3, 30, 1
bc 12, 1, .LBB0_2
; BB#1: # %test2 ; C
rlwinm. 3, 30, 0, 30, 30
beq 0, .LBB0_3
b .LBB0_4
.LBB0_2: # %optional1 ; B (copy of C)
bl a
nop
rlwinm. 3, 30, 0, 30, 30
bne 0, .LBB0_4
.LBB0_3: # %test3 ; E
rlwinm. 3, 30, 0, 29, 29
beq 0, .LBB0_5
b .LBB0_6
.LBB0_4: # %optional2 ; D (copy of E)
bl b
nop
rlwinm. 3, 30, 0, 29, 29
bne 0, .LBB0_6
.LBB0_5: # %test4 ; G
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
b .LBB0_7
.LBB0_6: # %optional3 ; F (copy of G)
bl c
nop
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
.LBB0_7: # %optional4 ; H
bl d
nop
.LBB0_8: # %exit ; Ret
ld 30, 96(1) # 8-byte Folded Reload
addi 1, 1, 112
ld 0, 16(1)
mtlr 0
blr
The tail-duplication has produced some benefit, but it has also produced a
trellis which is not laid out optimally. With this patch, we improve the layouts
of such trellises, and decrease the cost calculation for tail-duplication
accordingly.
This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have
back edges, which is a negative, but it has a bigger compensating
positive, which is that it handles the case where there are long strings
of skipped blocks much better than the original layout. Both layouts
handle runs of executed blocks equally well. Branch prediction also
improves if there is any correlation between subsequent optional blocks.
Here is the resulting concrete layout:
straight_test: # @straight_test
; BB#0: # %entry ; A (merged with test1)
mr 30, 3
andi. 3, 30, 1
bc 12, 1, .LBB0_4
; BB#1: # %test2 ; C
rlwinm. 3, 30, 0, 30, 30
bne 0, .LBB0_5
.LBB0_2: # %test3 ; E
rlwinm. 3, 30, 0, 29, 29
bne 0, .LBB0_6
.LBB0_3: # %test4 ; G
rlwinm. 3, 30, 0, 28, 28
bne 0, .LBB0_7
b .LBB0_8
.LBB0_4: # %optional1 ; B (Copy of C)
bl a
nop
rlwinm. 3, 30, 0, 30, 30
beq 0, .LBB0_2
.LBB0_5: # %optional2 ; D (Copy of E)
bl b
nop
rlwinm. 3, 30, 0, 29, 29
beq 0, .LBB0_3
.LBB0_6: # %optional3 ; F (Copy of G)
bl c
nop
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
.LBB0_7: # %optional4 ; H
bl d
nop
.LBB0_8: # %exit
Differential Revision: https://reviews.llvm.org/D28522
llvm-svn: 295223
This patch reverts region's scheduling to the original untouched state
in case if we have have decreased occupancy.
In addition it switches to use TargetRegisterInfo occupancy callback
for pressure limits instead of gradually increasing limits which were
just passed by. We are going to stay with the best schedule so we do
not need to tolerate worsened scheduling anymore.
Differential Revision: https://reviews.llvm.org/D29971
llvm-svn: 295206
This patch corrects the maximum workgroups per CU if we have big
workgroups (more than 128). This calculation contributes to the
occupancy calculation in respect to LDS size.
Differential Revision: https://reviews.llvm.org/D29974
llvm-svn: 295134
This change returns empty PSet list for M0 register. Otherwise its
PSet as defined by tablegen is SReg_32. This results in incorrect
register pressure calculation every time an instruction uses M0.
Such uses count as SReg_32 PSet and inadequately increase pressure
on SGPRs.
Differential Revision: https://reviews.llvm.org/D29798
llvm-svn: 294691
For amdgcn target Clang generates addrspacecast to represent null pointers in private and local address spaces.
In LLVM codegen, the static variable initializer is lowered by virtual function AsmPrinter::lowerConstant which is target generic. Since addrspacecast is target specific, AsmPrinter::lowerConst
This patch overrides AsmPrinter::lowerConstant with AMDGPUAsmPrinter::lowerConstant, which is able to lower the target-specific addrspacecast in the null pointer representation so that -1 is co
Differential Revision: https://reviews.llvm.org/D29284
llvm-svn: 294265
An assert occurs when calling SlotIndexes::getInstructionIndex with
a DBG_VALUE instruction because the function expects an instruction
with a slot index. However, there is no slot index for a DBG_VALUE
instruction.
Differential Revision: https://reviews.llvm.org/D29048
llvm-svn: 294070
Recommiting after fixing X86 inc/dec chain bug.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293893
The operand types were defined to fit the fp16_to_fp node, which
has the half as an integer type. v_cvt_f32_f16 does support
source modifiers, so change this to have an FP type and modifiers.
For targets without legal f16, this requires recognizing the
bit operations and trying to produce them.
llvm-svn: 293857
Functions matching LDS use to occupancy return results for a workgroup
of 64 workitems. The numbers has to be adjusted for bigger workgroups.
For example a workgroup of size 256 already occupies 4 waves just by
itself. Given that all numbers of LDS use in the compiler are per
workgroup, occupancy shall be multiplied by 4 in this case. Each 64
workitems still limited by the same number, but 4 subrgoups 64 workitems
each can afford 4 times more LDS to get the same occupancy.
In addition change initializes LDS size in the subtarget to a real value
for SI+ targets. This is required since LDS size is a variable in these
calculations.
Differential Revision: https://reviews.llvm.org/D29423
llvm-svn: 293837
These were simply preserving the flags of the original operation,
which was too conservative in most cases and incorrect for mul.
nsw/nuw may be needed for some combines to cleanup messes when
intermediate sext_inregs are introduced later.
Tested valid combinations with alive.
llvm-svn: 293776
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well, subject to some simple frequency calculations.
Differential Revision: https://reviews.llvm.org/D28583
llvm-svn: 293716
Summary:
For some reason instructions are being inserted in the wrong order with some
builds. I'm not sure why this is happening.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D29325
llvm-svn: 293639
Summary:
The affected transforms all implicitly use associativity of addition,
for which we usually require unsafe math to be enabled.
The "Aggressive" flag is only meant to convey information about the
performance of the fused ops relative to a fmul+fadd sequence.
Fixes Bug 31626.
Reviewers: spatel, hfinkel, mehdi_amini, arsenm, tstellarAMD
Subscribers: jholewinski, nemanjai, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D28675
llvm-svn: 293635
I think this is safe as long as no inputs are known to ever
be nans.
Also add an intrinsic for fmed3 to be able to handle all safe
math cases.
llvm-svn: 293598
Since we have no call support and late linking we can produce code
only for used symbols. This saves compilation time, size of the final
executable, and size of any intermediate dumps.
Run Internalize pass early in the opt pipeline followed by global
DCE pass. To enable it RT can pass -amdgpu-internalize-symbols option.
Differential Revision: https://reviews.llvm.org/D29214
llvm-svn: 293549
This is worse if the original constant is an inline immediate.
This should also be done for 64-bit adds, but requires fixing
operand folding bugs first.
llvm-svn: 293540
Accomplishes what r292982 was supposed to, which ended up
only really making the necessary test changes.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 293310
With the adjustPassManager interface that is now possible to use
custom early module passes.
Differential Revision: https://reviews.llvm.org/D29189
llvm-svn: 293300
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293184