After 49d00824bb, VPWidenRecipe only stores a single instruction.
tryToWiden can simply return the widen recipe, like other helpers in
VPRecipeBuilder.
This adds a minimal out-of-tree dialect template which can be used to start work on a standalone dialect implementation without having to integrate it in the main LLVM tree.
It mostly sets up the directory structure and provides CMakeLists.txt files to build a dialect library, an opt-like tool to operate on that dialect as well as tests. It could be expanded in the future to add examples of more user-defined operations, types, attributes, generated enums, transforms, etc. and linked to a tutorial.
Differential Revision: https://reviews.llvm.org/D77133
Summary:
D77423 started using a dominator tree in WasmEHPrepare, but we deleted
BBs in `prepareThrows` before we used the domtree in `prepareEHPads`,
and those CFG changes were not reflected in the domtree. This uses
`DomTreeUpdater` to make sure we update the domtree every time we delete
BBs from the CFG. This fixes ubsan/msan/expensive_check errors caught in
LLVM buildbots.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77465
eraseInstFromFunction() adds the operands of the erased instructions,
as those might now be dead as well. However, this is limited to
instructions with less than 8 operands.
This check doesn't make a lot of sense to me. As the instruction
gets removed afterwards, I don't see a potential for anything
overly pathological happening here (as we can only add those
operands to the worklist once). The impact on CTMark is in
the noise. We also have the same code in instruction sinking
and don't limit the operand count there.
Differential Revision: https://reviews.llvm.org/D77325
Summary:
It seems we need a different matcher for binary operator
in a template context.
Fixes this issue:
https://bugs.llvm.org/show_bug.cgi?id=44499
Reviewers: aaron.ballman, alexfh, hokein, njames93
Reviewed By: aaron.ballman
Subscribers: xazax.hun, cfe-commits
Tags: #clang, #clang-tools-extra
Differential Revision: https://reviews.llvm.org/D76990
Summary:
When we insert a call to the personality function wrapper
(`_Unwind_CallPersonality`) for a catch pad, we store some necessary
info in `__wasm_lpad_context` struct and pass it. One of the info is the
LSDA address for the function. For this, we insert a call to
`wasm.lsda()`, which will be lowered down to the address of LSDA, and
store it in a field in `__wasm_lpad_context`.
There are exceptions to this personality call insertion: catchpads for
`catch (...)` and cleanuppads (for destructors) don't need personality
function calls, because we don't need to figure out whether the current
exception should be caught or not. (They always should.)
There was a little optimization to `wasm.lsda()` call insertion. Because
the LSDA address is the same throughout a function, we don't need to
insert a store of `wasm.lsda()` return value in every catchpad. For
example:
```
try {
foo();
} catch (int) {
// wasm.lsda() call and a store are inserted here, like, in
// pseudocode,
// %lsda = wasm.lsda();
// store %lsda to a field in __wasm_lpad_context
try {
foo();
} catch (int) {
// We don't need to insert the wasm.lsda() and store again, because
// to arrive here, we have already stored the LSDA address to
// __wasm_lpad_context in the outer catch.
}
}
```
So the previous algorithm checked if the current catch has a parent EH
pad, we didn't insert a call to `wasm.lsda()` and its store.
But this was incorrect, because what if the outer catch is `catch (...)`
or a cleanuppad?
```
try {
foo();
} catch (...) {
// wasm.lsda() call and a store are NOT inserted here
try {
foo();
} catch (int) {
// We need wasm.lsda() here!
}
}
```
In this case we need to insert `wasm.lsda()` in the inner catchpad,
because the outer catchpad does not have one.
To minimize the number of inserted `wasm.lsda()` calls and stores, we
need a way to figure out whether we have encountered `wasm.lsda()` call
in any of EH pads that dominates the current EH pad. To figure that
out, we now visit EH pads in BFS order in the dominator tree so that we
visit parent BBs first before visiting its child BBs in the domtree.
We keep a set named `ExecutedLSDA`, which basically means "Do we have
`wasm.lsda()` either in the current EH pad or any of its parent EH
pads in the dominator tree?". This is to prevent scanning the domtree up
to the root in the worst case every time we examine an EH pad: each EH
pad only needs to examine its immediate parent EH pad.
- If any of its parent EH pads in the domtree has `wasm.lsda()`, this
means we don't need `wasm.lsda()` in the current EH pad. We also insert
the current EH pad in `ExecutedLSDA` set.
- If none of its parent EH pad has `wasm.lsda()`
- If the current EH pad is a `catch (...)` or a cleanuppad, done.
- If the current EH pad is neither a `catch (...)` nor a cleanuppad,
add `wasm.lsda()` and the store in the current EH pad, and add the
current EH pad to `ExecutedLSDA` set.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77423
Similar to the lowerV16I8Shuffle implementation, for binary compaction v8i16 shuffles we can avoid the PUNPCKLDQ(PSHUFB,PSHUFB) pattern on SSE41+ targets by using PACKUSDW and PBLENDW. Before SSE41 we would need to use PACKSSDW but that requires sign extension that seems to destroy any gains, even on targets without PSHUFB.
This is a bigger gain on AMD than Intel targets but should never be a regression, and avoiding the shuffle mask load(s) is always useful.
Noticed in codegen while dealing with PR31443.
Since D73835 we no longer need to define the whole IRBuilder
implementation in the header. This patch moves some of the larger
methods out of line, into the C++ file.
Differential Revision: https://reviews.llvm.org/D77332
Summary:
Note: This revision is very similar to D62296.
In D75756, we need `getDynamicSymbolIterators()` to skip first NULL symbol in `.dynsym`. And I believe it might be worth pointing this out in a separate patch to gather you experts' opinions.
I have checked that current code base will not be affected by this change.
```
dynamic_symbol_begin()
|- dynamic_symbol_end(): Ok
`- getDynamicSymbolIterators()
|- addDynamicElfSymbols(): llvm/tools/llvm-objdump/llvm-objdump.cpp, Line 934
| Ok, NULL symbol will be omitted by Line 945-947
| StringRef Name = unwrapOrError(Symbol.getName(), Obj->getName());
| if (Name.empty()) continue;
|- dumpSymbolNameFromObject(): llvm/tools/llvm-nm/llvm-nm.cpp, Line 1192
| There's no test for dumping dynamic debugging symbol. This patch helps improve llvm-nm behavior. (we should add test for this later)
`- computeSymbolSizes(): llvm/lib/Object/SymbolSize.cpp, Line 52
|- OProfileJITEventListener::notifyObjectLoaded(): llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp, Line 92
| Ok, NULL symbol will be omitted by Line 94-95
| if (!Sym.getType() || *Sym.getType() != SF_Function) continue;
|- IntelJITEventListener::notifyObjectLoaded(): llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp, Line 98
| Ok, NULL symbol will be omitted by Line 124-126 (same as previous one)
|- PerfJITEventListener::notifyObjectLoaded(): llvm/lib/ExecutionEngine/PerfJITEvents/PerfJITEventListener.cpp, Line 244
| Ok, NULL symbol will be omitted by Line 254-256, (same as previous one)
|- SymbolizableObjectFile::create(): llvm/lib/DebugInfo/Symbolize/SymbolizableObjectFile.cpp, Line 73
| Ok, NULL symbol will be omitted by Line 75
| res->addSymbol()
| In addSymbol(), Line 167-168
| if (!Sec || (Obj && Obj->section_end() == *Sec)) return std::error_code();
|- dumpCXXData(): llvm/tools/llvm-cxxdump/llvm-cxxdump.cpp, Line 189
| Ok, NULL symbol will be omitted by Line 199-202
| object::section_iterator SecI = *SecIOrErr;
| // Skip external symbols.
| if (SecI == Obj->section_end())
| continue;
`- printLineInfoForInput(): llvm/tools/llvm-rtdyld/llvm-rtdyld.cpp, Line 418
Ok, NULL symbol will be omitted by Line 430-477
if (Type == object::SymbolRef::ST_Function) {
...
}
```
Reviewers: grimar, jhenderson, MaskRay
Reviewed By: jhenderson, MaskRay
Subscribers: rupprecht, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76081
Forward declare DemandedBits in IVDescriptors, and move include
into the cpp file. Also drop the include from LoopUtils, which
does not need it at all.
Summary: (Only if their definitions are visible and they have no other docs)
Reviewers: kadircet
Subscribers: jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77408
The implementation of shape inference in the toy tutorial did not conform to the correct algorithmic description.
The result was only correct because all operations appear to be processed in sequence.
Differential Revision: https://reviews.llvm.org/D77382
as invalid.
We create those when forming trivial type source information with no
associated location, which, unfortunately, we do create in some cases
(when a TreeTransform with no base location is used to transform a
QualType).
This would previously lead to rejects-valid bugs when we misinterpreted
these constructs as having no nested-name-specifier.
Mark it expected fail for now.
The test output shows that the "internal" thread listing isn't showing the
step out plan that we use to step back out of a function we're stepping into.
The internal plan listing code has nothing platform specific in it, so that
isn't the problem.
I am pretty sure the difference is that on MacOS we step into the function and then need to
step back out again so we push the internal plan the test is checking for. But on Linux we
are able to step past the function without stepping into it.
So nothing is actually going wrong here, I just need to find a better test case where I
can ensure we are going to have to push a private plan. It's probably better to test this
using a custom thread plan, then I can control the state of the plan stack better.
That's for Monday...
Summary:
A recent change in ThreadPlans introduced this little compilation error.
Seems to be related to the work around https://reviews.llvm.org/D76814.
Reviewers: clayborg, labath, jingham
Reviewed By: jingham
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D77450
Summary: The attribute grammar includes an optional trailing colon type, so for attributes without a constant buildable type this will generally lead to unexpected and undesired behavior. Given that, it's better to just error out on these cases.
Differential Revision: https://reviews.llvm.org/D77293
Summary:
In this diff of mine D77186 I introduce a bug in the replace operation, where I was failing fast by mistake.
Besides, a similar problem existed in the insert-after operation, where it was failing fast.
Finally, the remove operation was wrong, as it was not using the indices provided by the users.
I fixed those issues and added some tests account for cases with multiple elements in these requests.
Reviewers: labath, clayborg
Reviewed By: labath
Subscribers: mgrang, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D77324
Summary: It is a very common user trap to think that the location printed along with the diagnostic is the same as the current operation that caused the error. This revision changes the behavior to always print the current operation, except for when diagnostics are being verified. This is achieved by moving the command line flags in IR/ to be options on the MLIRContext.
Differential Revision: https://reviews.llvm.org/D77095
memchr consistent and comprehensible, and document them.
We previously allowed evaluation of memcmp on arrays of integers of any
size, so long as the call evaluated to 0, and allowed evaluation of
memchr on any array of integral type of size 1 (including enums). The
purpose of constant-evaluating these builtins is only to support
constexpr std::char_traits, so we now consistently allow them on arrays
of (possibly signed or unsigned) char only.
Summary:
@labath mentioned to me that test files shouldn't have a license header.
I saw this one some days ago, so I'm doing some cleaning.
Reviewers: labath, clayborg
Subscribers: lldb-commits, labath
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D77328
Also turn on the command trace unconditionally for TestThreadPlanCommands.py as the
tests for the Ubuntu bot don't seem to run with -t making it hard to see why this is
failing remotely.
An enum may be considered to be a complete type if it was forward
declared. It may be declared with a fixed underlying type, or, in MSVC
compatiblity mode, with no type at all.
Previously, the code was written with special handling for fixed enums.
I generalized the code to check if the underlying integer type is known,
which should be the case when targetting the MSVC C++ ABI.
Fixes PR45409
Always depend on the compiler to have a correct implementation of
max_align_t in stddef.h and don't provide a fallback. For pre-C++11,
require __STDCPP_NEW_ALIGNMENT__ in <new> as provided by clang in all
standard modes. Adjust test cases to avoid testing or using max_align_t
in pre-C++11 mode and also to better deal with alignof(max_align_t)>16.
Document requirements of the alignment tests around natural alignment of
power-of-two-sized types.
Differential revision: https://reviews.llvm.org/D73245