This was added in r188351 to fix a naming conflict between the
profile_rt-static and profile_rt-shared who both ended up in
lib/profile_rt.lib.
The change also affected other libraries (like libclang), and
users are reporting that they find it surprising that there's
no longer a libclang.lib. Since the profile_rt naming conflict
doesn't seem to exist any more, I think we can remove this.
Differential Revision: http://reviews.llvm.org/D7391
llvm-svn: 228049
Patch to match cases where shuffle masks can be reduced to bit shifts. Similar to byte shift shuffle matching from D5699.
Differential Revision: http://reviews.llvm.org/D6649
llvm-svn: 228047
Patch by Kit Barton.
Add the vector population count instructions for byte, halfword, word,
and doubleword sizes. There are two major changes here:
PPCISelLowering.cpp: Make CTPOP legal for vector types.
PPCRegisterInfo.td: Added v2i64 to the VRRC register
definition. This is needed for the doubleword variations of the
integer ops that were added in P8.
Test Plan
Test the instruction vpcnt* encoding/decoding in ppc64-encoding-vmx.s
Test the generation of the vpopcnt instructions for various vector
data types. When adding the v2i64 type to the Vector Register set, I
also needed to add the appropriate bit conversion patterns between
v2i64 and the existing vector types. Testing for these conversions
were also added in the test case by passing a different vector type as
a parameter into the test functions. There is also a run step that
will ensure the vpopcnt instructions are generated when the vsx
feature is disabled.
llvm-svn: 228046
Summary: Make sure that FileCheck is built when running check-fuzzer
Test Plan:
run on bot:
lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fuzzer
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7387
llvm-svn: 228045
What this does is that if you accidentally select these instructions on VI,
the code generation will fail, because the pseudo -> _vi mapping will be
undefined.
The idea is to be able to catch possible future bugs easily.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 228038
with 'stress' to indicate that the specific output isn't interesting and
relax them to only check the last instruction (a ret).
I've updated the one test case that really uses this to name the one
'stress_test' which was actually producing output we can directly check.
With this, the script doesn't introduce noise when run over the v16 test
file.
llvm-svn: 228033
Also re-implements the `dwarf::Tag` enumerator. I've moved the mock
tags into the enumerator since there's no other way to do this. Really
they shouldn't be used at all (they're just a hack to identify
`MDNode`s, but we have a class hierarchy for that now).
llvm-svn: 228030
`dwarf::TagString()` shouldn't stringify `DW_TAG_lo_user` or
`DW_TAG_hi_user`. These aren't actual tags; they're markers for the
edge of vendor-specific tag regions.
llvm-svn: 228029
This patch adds general shuffle pattern matching for the MOVQ zero-extend instruction (copy lower 64bits, zero upper) for all 128-bit integer vectors, it is added as a fallback test in lowerVectorShuffleAsZeroOrAnyExtend.
llvm-svn: 228022
Summary:
Straight-line strength reduction (SLSR) is implemented in GCC but not yet in
LLVM. It has proven to effectively simplify statements derived from an unrolled
loop, and can potentially benefit many other cases too. For example,
LLVM unrolls
#pragma unroll
foo (int i = 0; i < 3; ++i) {
sum += foo((b + i) * s);
}
into
sum += foo(b * s);
sum += foo((b + 1) * s);
sum += foo((b + 2) * s);
However, no optimizations yet reduce the internal redundancy of the three
expressions:
b * s
(b + 1) * s
(b + 2) * s
With SLSR, LLVM can optimize these three expressions into:
t1 = b * s
t2 = t1 + s
t3 = t2 + s
This commit is only an initial step towards implementing a series of such
optimizations. I will implement more (see TODO in the file commentary) in the
near future. This optimization is enabled for the NVPTX backend for now.
However, I am more than happy to push it to the standard optimization pipeline
after more thorough performance tests.
Test Plan: test/StraightLineStrengthReduce/slsr.ll
Reviewers: eliben, HaoLiu, meheff, hfinkel, jholewinski, atrick
Reviewed By: jholewinski, atrick
Subscribers: karthikthecool, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D7310
llvm-svn: 228016
This patch detects consecutive vector loads using the existing
EltsFromConsecutiveLoads() logic. This fixes:
http://llvm.org/bugs/show_bug.cgi?id=22329
This patch effectively reverts the tablegen additions of D6492 /
http://reviews.llvm.org/rL224344 ...which in hindsight were a horrible hack.
The test cases that were added with that patch are simply modified to load
from varying offsets of a base pointer. These loads did not match the existing
tablegen patterns.
A happy side effect of doing this optimization earlier is that we can now fold
the load into a math op where possible; this is shown in some of the updated
checks in the test file.
Differential Revision: http://reviews.llvm.org/D7303
llvm-svn: 228006
lto_codegen_compile_optimized. Also add lto_api_version.
Before this commit, we can only dump the optimized bitcode after running
lto_codegen_compile, but it includes some impacts of running codegen passes,
one example is StackProtector pass. We will get assertion failure when running
llc on the optimized bitcode, because StackProtector is effectively run twice.
After splitting lto_codegen_compile, the linker can choose to dump the bitcode
before running lto_codegen_compile_optimized.
lto_api_version is added so ld64 can check for runtime-availability of the new
API.
rdar://19565500
llvm-svn: 228000
If we are building an 64bit installer on Windows we have to adjust the
Program Files path otherwise it uses the wrong Program Files (x86)
directory. Related CMake bug report
http://public.kitware.com/Bug/view.php?id=14211
Patch by Ismail Dönmez!
llvm-svn: 227999
This can happen when a REV instruction is commuted.
The trick is not to define the _vi versions of instructions, which has these
consequences:
- code generation will always fail if a pseudo cannot be lowered
(very useful to catch bugs where an unsupported instruction somehow makes
it to the printer)
- ability to query if a pseudo can be lowered, which is done in commuteOpcode
to prevent REV from commuting to non-REV on VI
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 227990
The getCommute* functions are only used with pseudos, so this commit doesn't
change anything.
The issue with missing non-rev versions of shift instructions on VI will fixed
separately.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 227989
- V_MAC_LEGACY_F32 exists on VI, but it's VOP3-only.
- Define CVT_PK opcodes which are different between SI and VI. These are
unused. The idea is to define all chip differences.
v2: keep V_MUL_LO_U32
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 227988
These are VOP2 on SI and VOP3 on VI, and their pseudos are neither, which can
be a problem. In order to make isVOP2 and isVOP3 queries behave as expected,
the encoding must be determined first.
This doesn't fix any known issue, but better safe than sorry.
v2: add and use getMCOpcodeFromPseudo
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 227987
This fixes a hang when using an empty geometry shader.
v2: - don't add s_nop when followed by s_waitcnt
- comestic changes
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 227986
r224330 introduced a bug by misinterpreting the "FeatureVectorUAMem" bit.
The commit log says that change did not affect anything, but that's not correct.
That change allowed SSE instructions to have unaligned mem operands folded into
math ops, and that's not allowed in the default specification for any SSE variant.
The bug is exposed when compiling for an AVX-capable CPU that had this feature
flag but without enabling AVX codegen. Another mistake in r224330 was not adding
the feature flag to all AVX CPUs; the AMD chips were excluded.
This is part of the fix for PR22371 ( http://llvm.org/bugs/show_bug.cgi?id=22371 ).
This feature bit is SSE-specific, so I've renamed it to "FeatureSSEUnalignedMem".
Changed the existing test case for the feature bit to reflect the new name and
renamed the test file itself to better reflect the feature.
Added runs to fold-vex.ll to check for the failing codegen.
Note that the feature bit is not set by default on any CPU because it may require a
configuration register setting to enable the enhanced unaligned behavior.
llvm-svn: 227983
This patch is a third attempt to properly handle the local-dynamic and
global-dynamic TLS models.
In my original implementation, calls to __tls_get_addr were hidden
from view until the asm-printer phase, at which point the underlying
branch-and-link instruction was created with proper relocations. This
mostly worked well, but I used some repellent techniques to ensure
that the TLS_GET_ADDR nodes at the SD and MI levels correctly received
input from GPR3 and produced output into GPR3. This proved to work
badly in the presence of multiple TLS variable accesses, with the
copies to and from GPR3 being scheduled incorrectly and generally
creating havoc.
In r221703, I addressed that problem by representing the calls to
__tls_get_addr as true calls during instruction lowering. This had
the advantage of removing all of the bad hacks and relying on the
existing call machinery to properly glue the copies in place. It
looked like this was going to be the right way to go.
However, as a side effect of the recent discovery of problems with
linker optimizations for TLS, we discovered cases of suboptimal code
generation with this strategy. The problem comes when tls_get_addr is
called for the same address, and there is a resulting CSE
opportunity. It turns out that in such cases MachineCSE will common
the addis/addi instructions that set up the input value to
tls_get_addr, but will not common the calls themselves. MachineCSE
does not have any machinery to common idempotent calls. This is
perfectly sensible, since presumably this would be done at the IR
level, and introducing calls in the back end isn't commonplace. In
any case, we end up with two calls to __tls_get_addr when one would
suffice, and that isn't good.
I presumed that the original design would have allowed commoning of
the machine-specific nodes that hid the __tls_get_addr calls, so as
suggested by Ulrich Weigand, I went back to that design and cleaned it
up so that the copies were properly held together by glue
nodes. However, it turned out that this didn't work either...the
presence of copies to physical registers kept the machine-specific
nodes from being commoned also.
All of which leads to the design presented here. This is a return to
the original design, except that no attempt is made to introduce
copies to and from GPR3 during instruction lowering. Virtual registers
are used until prior to register allocation. At that point, a special
pass is run that identifies the machine-specific nodes that hide the
tls_get_addr calls and introduces the copies to and from GPR3 around
them. The register allocator then coalesces these copies away. With
this design, MachineCSE succeeds in commoning tls_get_addr calls where
possible, and we get nice optimal code generation (better than GCC at
the moment, which does not common these calls).
One additional problem must be dealt with: After introducing the
mentions of the physical register GPR3, the aggressive anti-dependence
breaker sees opportunities to improve scheduling by selecting a
different register instead. Flags must be used on the instruction
descriptions to tell the anti-dependence breaker to keep its hands in
its pockets.
One thing missing from the original design was recording a definition
of the link register on the GET_TLS_ADDR nodes. Doing this was found
to be insufficient to force a stack frame to be created, which led to
looping behavior because two different LR values were stored at the
same address. This appears to have been an oversight in
PPCFrameLowering::determineFrameLayout(), which is repaired here.
Because MustSaveLR() returns true for calls to builtin_return_address,
this changed the expected behavior of
test/CodeGen/PowerPC/retaddr2.ll, which now stacks a frame but
formerly did not. I've fixed the test case to reflect this.
There are existing TLS tests to catch regressions; the checks in
test/CodeGen/PowerPC/tls-store2.ll proved to be too restrictive in the
face of instruction scheduling with these changes, so I fixed that
up.
I've added a new test case based on the PrettyStackTrace module that
demonstrated the original problem. This checks that we get correct
code generation and that CSE of the calls to __get_tls_addr has taken
place.
llvm-svn: 227976