them when performing a const conversion on the implicit object argument for a
member operator call on an rvalue.
No change to the testsuite: the test for this change is that the added
assertion does not fire any more.
llvm-svn: 144333
need to provide a 'dominating IP' which is guaranteed to
dominate the (de)activation point but which cannot be avoided
along any execution path from the (de)activation point to
the push-point of the cleanup. Using the entry block is
bad mojo.
llvm-svn: 144276
a previously-inactive cleanup, not only do we need a
flag variable, but we should also force the cleanup to
query the flag variable. However, we only need to do
this when we're activating in a context that's
conditionally executed; otherwise, we may safely
assume that the cleanup is dominated by the activation
point.
llvm-svn: 144271
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
is currently too inefficient to allow us to use it for array initializers, but
fortunately we usually don't yet need to evaluate such initializers.
llvm-svn: 144260
version of Ubuntu. It has a very broken multiarch configuration, and so
we need special logic to handle it correctly. Fixing and testing this
uncovered a few other trivial issues with the logic that are fixed as
well.
I added tests to cover this as it is hard to notice if you install
recent versions of the OS.
llvm-svn: 144165
block-typed __block variables using objc_retainBlock
and objc_dispose. Previously we were using
_Block_object_assign and _Block_object_destroy
with BLOCK_BYREF_CALLER, which causes the runtime
to completely ignore the retain and release.
In most cases this doesn't cause catastrophe
because the retain/release are balanced and
because the block in the variable was copied
upon assignment there. However, the stack
copy of the variable will be released when
it goes out of scope, which is a problem if
that value was released due to an assignment
to the heap copy. Similarly, a leak can occur
if the variable is assigned after the copy to
the heap.
llvm-svn: 144162
In certain cases ASTReader would call the normal DiagnosticsEngine API to initialize
the state of diagnostic pragmas but DiagnosticsEngine would try to compare source locations
leading to crash because the main FileID was not yet initialized.
Yet another case of the ASTReader trying to use the normal APIs and inadvertently breaking
invariants. Fix this by having the ASTReader set up the internal state directly.
llvm-svn: 144153
Analysis by Ted:
"
if (stateZero && !stateNotZero) {
is checking to see if:
(A) "it is possible for the value to be zero" (stateZero)
AND
(B) "it is not possible for the value to be non-zero" (!stateNotZero)
That said, the only way for both B to be true AND A to be false is if the path is completely infeasible by the time we reach the divide-by-zero check. For the most part (all cases?), such cases should automatically get pruned out at branches (i.e., an infeasible path gets dropped), which is the case in our tests. So the question is whether or not such an infeasible path might not get dropped earlier? I can't envision any right now.
Indeed, the rest of the checker assumes that if the bug condition didn't fire then 'stateNotZero' is non-NULL:
C.addTransition(stateNotZero);
"
llvm-svn: 144114
which they do. This avoids all of the default argument promotions that
we (1) don't want, and (2) undo during that custom type checking, and
makes sure that we don't run into trouble during template
instantiation. Fixes PR11320.
llvm-svn: 144110
useful when using Clang as a system-compiler, but its harmless. When
using Clang as a cross-compiler, this can be very handy as quite a few
toolchains ship their libc headers here rather than under
'/usr/include'.
For reference, this is the beginning of my work to also make the Clang
driver more suitable as a cross-compiler.
llvm-svn: 144089
The Neon load/store intrinsics need to be implemented as macros to avoid
hiding alignment attributes on the pointer arguments, and the macros can
only evaluate those pointer arguments once (in case they have side effects),
so it has been hard to get the right type checking for those pointers.
I tried various alternatives in the arm_neon.h header, but it's much more
straightforward to just check directly in Sema.
llvm-svn: 144075
written, instead of the resolved storage class, which might not be
legal to specify on the declaration (such as out-of-line definitions
of static class members in C++, and __local variables in OpenCL).
Initial patch by Richard Membarth.
llvm-svn: 144062
expression evaluation:
- When folding a non-value-dependent expression, we may try to use the
initializer of a value-dependent variable. If that happens, give up.
- In C++98, actually check that a const, non-volatile DeclRefExpr inside an ICE
is of integral or enumeration type (a reference isn't OK!)
- In C++11, DeclRefExprs for objects of const literal type initialized with
value-dependent expressions are themselves value-dependent.
- So are references initialized with value-dependent expressions (though this
case is missing from the C++11 standard, along with many others).
llvm-svn: 144056
This patch just adds a simple NeonTypeFlags class to replace the various
hardcoded constants that had been used until now. Unfortunately I couldn't
figure out a good way to avoid duplicating that class between clang and
TableGen, but since it's small and rarely changes, that's not so bad.
llvm-svn: 144054
doesn't duplicate, but they all surface as implicit
properties. It's also a useful optimization to not
duplicate the implicit getter lookup. So, trust the
getter lookup that was already done in these cases.
llvm-svn: 144031
initializer; all other constexpr variables are merely required to be
initialized. In particular, a user-provided constexpr default constructor can be
used for such initialization.
llvm-svn: 144028
default", make a note of which is used when creating the
initial declaration. Previously, we would wait until later to handle
default/delete as a definition, but this is too late: when adding the
declaration, we already treated the declaration as "user-provided"
when in fact it was merely "user-declared".
Fixes PR10861 and PR10442, along with a bunch of FIXMEs.
llvm-svn: 144011
-Move __strong/__weak added to a property type to the property attribute,
e.g. "@property (assign) __weak Foo *prop;" --> "@property (weak) Foo *prop;"
-Remove (assign) in a property so that it becomes strong-by-default in ARC.
llvm-svn: 143979
__int128_t and __uint128_t. Short and unsigned short integer literals support
is only to work around a crasher as reported in PR11179 and will be removed
once Clang no longer builds short integer literals.
llvm-svn: 143977
__weak is unsupported by the deployment target, since it is going to be
ignored anyway.
Makes it easier for incremental migration from GC.
llvm-svn: 143975
the injected-class-name of a class (or class template) to the
declaration that results from substituting the given template
arguments. Previously, we would actually perform a substitution into
the injected-class-name type and then retrieve the resulting
declaration. However, in certain, rare circumstances involving
deeply-nested member templates, we would get the wrong substitution
arguments.
This new approach just matches up the declaration with a declaration
that's part of the current context (or one of its parents), which will
either be an instantiation (during template instantiation) or the
declaration itself (during the definition of the template). This is
both more efficient (we're avoiding a substitution) and more correct
(we can't get the template arguments wrong in the member-template
case).
Fixes <rdar://problem/9676205>.
Reinstated, now that we have the fix in r143967.
llvm-svn: 143968
We don't actually need a separate flag for non-sysrooted paths as the
driver has to manage the sysroot anyways. The driver is not infrequently
adding paths to the header search based on their existence on the
filesystem. For that, it has to add the sysroot anyways, we should pass
it on down to CC1 already joined. More importantly, the driver cannot in
all cases distinguish between sysrooted paths and paths that are
relative to the Clang binary's installation directory. Essentially, we
always need to ignore the system root for these internal header search
options. It turns out in most of the places we were already providing
the system root in the driver, and then another one in CC1 so this fixes
several bugs.
llvm-svn: 143917
partially undoes the revert in r143491, but does not introduce any new instances
of the underlying issue (which is not yet fixed) in code which does not use
the 'constexpr' keyword.
llvm-svn: 143905
toolchain. The logic is mostly generic already, and where possible
should be made more generic. Also, it has no impact other than to expose
a set of methods which each toolchain can then query to setup their
desired configuration. These should be available to toolchains beyond
just Linux.
llvm-svn: 143899
detection system that is providing the library paths and crt object
files.
This, modulo any bugs that need to be shaken out, resolves numerous bugs
with how we handle header paths. Here are a few that I know of:
- We no longer need to enumerate all GCC versions searched.
- OpenSUSE searched GCC versions in the wrong order.
- There were typos when selecting various patterns, etc.
- We aren't stating quite some many directories now.
- SysRoot didn't always work in a reasonable way.
I'm working on tests for this, but the tests are making me and Lit sad.
The real testing for this type of driver change is to try it out on
various distributions. I'll hit the common ones right away, and start
more thorough testing tomorrow after some sleep.
llvm-svn: 143874
the detected GCC installation. This allows us to expose another aspect
of what we detected: the GCC version. This will be used shortly.
llvm-svn: 143871
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
directories. This way we stop at the first multiarch directory found on
the system. This achieves the real intended result of pruning
non-existent directories.
llvm-svn: 143866
a better way. The more I think about it the more worried I am that this
hammer is simply too large. We should only be reaching out to the
filesystem when doing interesting "detection" things, not gratuitously.
Original commit message:
Start pruning down the set of flags passed to CC1 for header search.
This cleans up the CC1 invocations, and reduces the overhead there.
We're still hammering the filesystem looking for the C++ standard
libraries though.
The only reservation I have about this policy is the case of virtualized
files inside of CC1, but it's not clear what the best way to solve that
is. The Driver consistently queries the actual filesystem to make its
decisions. Changing that would be a very large undertaking. It might be
worthwhile, but it's not an immediate goal.
llvm-svn: 143865
This cleans up the CC1 invocations, and reduces the overhead there.
We're still hammering the filesystem looking for the C++ standard
libraries though.
The only reservation I have about this policy is the case of virtualized
files inside of CC1, but it's not clear what the best way to solve that
is. The Driver consistently queries the actual filesystem to make its
decisions. Changing that would be a very large undertaking. It might be
worthwhile, but it's not an immediate goal.
llvm-svn: 143864
edge cases and have better behavior. Specifically, we should actually
prefer the general '4.6' version string over the '4.6.1' string, as
'4.6.2' should be able to replace it without breaking rpaths or any
other place that these paths have been embedded. Debian-based
distributions are already using a path structure with symlinks to
achieve in-place upgrades for patch versions. Now our parsing reflects
this and we select the shorter paths instead of the longer paths.
A separate issue was that we would not parse a leading patch version
number even in the presence of a suffix. The above change makes this
more problematic as it would cause a suffix being added to make us treat
the entire thing as patch-version-agnostic, which it isn't. This changes
the logic to distinguish between '4.4.x' and 4.4.1-x', and retain that
the latter has *some* patch number information. Currently, we always
bias toward the shorter and more canonical version strings. If it
becomes important we can add more Debian like rules to produce sequences
such as '4.4.1b' > '4.4.1' > '4.4.1-rc3' > '4.4.1-rc2' > '4.4.1-pre5',
but I'm very doubtful this will ever matter or be desirable.
I've made the tests for this logic a bit more interesting, and added
some specific tests for logic that is now different.
llvm-svn: 143841
variable to begin with... As I'm planning to add include root
information to this object, this would have caused confusion. It didn't
even *actually* hold the include root by the time we were done with it.
llvm-svn: 143840
toolchain instead of merely using it in the constructor. This will allow
us to query it when building include paths as well as the file search
paths built in the constructor. I've lifted as little of it as I could
into the header file.
Eventually this will likely sink down into some of the Generic
toolchains and be used on more platforms, but I'm starting on Linux so
I can work out all the APIs needed there, where it is easiest to test
and we have the most pressing need.
llvm-svn: 143838
headers. As llvm-gcc is dead, and I have no idea if this ever really
worked, I think it's time for it to go. More importantly, it makes it
harder to generalize the include search logic. If someone really wants
these to work, they can set the CPLUS_INCLUDE_PATH environment variable.
llvm-svn: 143836
the first (and diff-noisiest) step to making Linux header searching
tremendously more principled and less brittle. Note that this step
should have essentially no functional impact. We still search the exact
same set of paths in the exact same order. The only change here is where
the code implementing such a search lives.
This has one obvious negative impact -- we now pass a ludicrous number
of flags to the CC1 layer. That should go away as I re-base this logic
on the logic to detect a GCC installation. I want to do this in two
phases so the bots can tell me if this step alone breaks something, and
so that the diffs of the refactoring make more sense.
llvm-svn: 143822
actually manage the builtin header file includes as well as the system
ones.
This one is actually debatable whether it belongs in the driver or not,
as the builtin includes are really an internal bit of implementation
goop for Clang. However, they must be included at *exactly* the right
point in the sequence of header files, which makes it essentially
impossible to have this be managed by the Frontend and the rest by the
Driver. I have terrible ideas that would "work", but I think they're
worse than putting this in the driver and making the Frontend library
even more ignorant of the environment and system on which it is being
run.
Also fix the fact that we weren't properly respecting the flags which
suppress standard system include directories.
Note that this still leaves all of the Clang tests which run CC1
directly and include builtin header files broken on Windows. I'm working
on a followup patch to address that.
llvm-svn: 143801
encode the *exact* semantics which the header search paths internally
built by the Frontend layer have had, which is both non-user-provided,
and at times adding the implicit extern "C" bit to the directory entry.
There are lots of CC1 options that are very close, but none do quite
this, and they are all already overloaded for other purposes. In some
senses this makes the command lines more clean as it clearly indicates
which flags are exclusively used to implement internal detection of
"standard" header search paths.
Lots of the implementation of this is really crufty, due to the
surrounding cruft. It doesn't seem worth investing lots of time cleaning
this up as it isn't new, and hopefully *lots* of this code will melt
away as header search inside of the frontend becomes increasingly
trivial.
llvm-svn: 143798
Windows. There are still FIXMEs and lots of problems with this code.
Some of them will be addressed shortly by my follow-up patches, but most
are going to wait until we isolate this code and can fix it properly.
This version should be no worse than what we had before.
llvm-svn: 143752
create an attributed type with same type as the original type.
We effectively retain the source info that an ownership attribute was present but the attribute
is ignored by not modifying the type that it was applied to.
llvm-svn: 143736
handling logic of the generic ToolChain. This flag, despite its name,
has *nothing* to do with the GCC flag '-nostdlib' that relates
(exclusively) to the linking behavior. It is a most unfortunate name in
that regard...
It is used to tell InitHeaderSearch.cpp *which* set of C++ standard
library header search paths to use -- those for libstdc++ from GCC's
installation, or those from a libc++ installation. As this logic is
hoisted out of the Frontend, and into the Driver as part of this
ToolChain, the generic method will be overridden for the platform, where
it can implement this logic directly. As such, hiding the CC1 option
passing in the generic space is a natural fit despite the odd naming.
Also, expand on the comments to clarify whats going on, and tidy up the
Tools.cpp code now that its simpler.
llvm-svn: 143687
implementation in the driver. This cleans up the signature and semantics
of the include flag adding component of the toolchain. Another step to
ready it for holding all the InitHeaderSearch logic.
llvm-svn: 143686
the rest of the mess in InitHeaderSearch.cpp. We could hoist it into the
driver profitably, removing more noise from the driver -> frontend
communication.
llvm-svn: 143685
and the C++ include management routine from the proper place when
forming preprocessor options in the driver. This is the first step to
teaching the driver to manage all of the header search paths. Currently,
these methods remain just stubs in the abstract toolchain. Subsequent
patches will flesh them out with implementations for various toolchains
based on the current code in InitHeaderSearch.cpp.
llvm-svn: 143684
to allow us to implement the C++11 rule that a non-active union member can't be
read, and use it to implement subobject access for string literals.
llvm-svn: 143677
A PCH file keeps track of #pragma diagnostics state; when loading the preamble, they conflicted
with the #pragma diagnostic state already present in the DiagnosticsEngine object due to
parsing the preamble.
Fix this by clearing the state of the DiagnosticsEngine object.
Fixes rdar://10363572 && http://llvm.org/PR11254.
llvm-svn: 143644
definition, we may not have a scope corresponding to the namespace
where that friend function template actually lives. Work around this
issue by faking up a scope with the appropriate DeclContext.
This is a bit of a hack, but it fixes <rdar://problem/10204947>.
llvm-svn: 143614
to types. Enable this flag for code completion, where knowing whether
something is in an anonymous or inline namespace is actually not
useful, since you don't have to type it anyway. Fixes
<rdar://problem/10208818>.
llvm-svn: 143599
the injected-class-name of a class (or class template) to the
declaration that results from substituting the given template
arguments. Previously, we would actually perform a substitution into
the injected-class-name type and then retrieve the resulting
declaration. However, in certain, rare circumstances involving
deeply-nested member templates, we would get the wrong substitution
arguments.
This new approach just matches up the declaration with a declaration
that's part of the current context (or one of its parents), which will
either be an instantiation (during template instantiation) or the
declaration itself (during the definition of the template). This is
both more efficient (we're avoiding a substitution) and more correct
(we can't get the template arguments wrong in the member-template
case).
Fixes <rdar://problem/9676205>.
llvm-svn: 143551
The -g and --gdwarf2 options are currently synonyms to the Darwin assembler.
But clang itself does not recognize --gdwarf2, so if we want to experiment
with using clang, with its integrated assembler, to replace the default
assembler, it is necessary to use -g. <rdar://problem/10349486>
llvm-svn: 143533