Based on a profile, a couple of hot spots were identified in the
main type merging loop. The code was simplified, a few loops
were re-arranged, and some outlined functions were inlined. This
speeds up type merging by a decent amount, shaving around 3-4 seconds
off of a 40 second link in my test case.
Differential Revision: https://reviews.llvm.org/D42559
llvm-svn: 323790
There's some abstraction overhead in the underlying
mechanisms that were being used, and it was leading to an
abundance of small but not-free copies being made. This
showed up on a profile. Eliminating this and going back to
a low-level byte-based implementation speeds up lld with
/DEBUG between 10 and 15%.
Differential Revision: https://reviews.llvm.org/D42148
llvm-svn: 322871
This adds the /DEBUG:GHASH option to LLD which will look for
the existence of .debug$H sections in linker inputs and use them
to accelerate type merging. The clang-cl side has already been
added, so this completes the work necessary to begin experimenting
with this feature.
Differential Revision: https://reviews.llvm.org/D40980
llvm-svn: 320719
Currently this is an LLVM extension to the COFF spec which is
experimental and intended to speed up linking. For now it is
behind a hidden cl::opt flag, but in the future we can move it
to a "real" cc1 flag and have the driver pass it through whenever
it is appropriate.
The patch to actually make use of this section in lld will come
in a followup.
Differential Revision: https://reviews.llvm.org/D40917
llvm-svn: 320649
Previously, when linking against libcmt from the MSVC runtime,
lld-link /verbose would show "Ignoring unknown symbol record
with kind 0x1006". It turns out this was because
TypeIndexDiscovery did not handle S_REGISTER records, so these
records were not getting properly remapped.
Patch by: Alexnadre Ganea
Differential Revision: https://reviews.llvm.org/D40919
llvm-svn: 320108
Currently nothing uses this, but this at least gets the core
algorithm in, and adds some test to demonstrate correctness.
Differential Revision: https://reviews.llvm.org/D40736
llvm-svn: 319854
This was storing the hash alongside the key so that the hash
doesn't need to be re-computed every time, but in doing so it
was allocating a structure to keep the key size small in the
DenseMap. This is a noble goal, but it also leads to a pointer
indirection on every probe, and this cost of this pointer
indirection ends up being higher than the cost of having a
slightly larger entry in the hash table. Removing this not only
simplifies the code, but yields a small but noticeable
performance improvement in the type merging algorithm.
llvm-svn: 319493
This class had some code that would automatically remap type
indices before hashing and serializing. The only caller of
this method was the TypeStreamMerger anyway, and the method
doesn't make general sense, and prevents making certain future
improvements to the class. So, factoring this up one level
into the TypeStreamMerger where it belongs.
llvm-svn: 319377
A couple of places in LLD were passing references to
TypeTableCollections around, which makes it hard to change the
implementation at runtime. However, these cases only needed to
iterate over the types in the collection, and TypeCollection
already provides a handy abstract interface for this purpose.
By implementing this interface, we can get rid of the need to
pass TypeTableBuilder references around, which should allow us
to swap the implementation at runtime in subsequent patches.
llvm-svn: 319345
The motivation behind this patch is that future directions require us to
be able to compute the hash value of records independently of actually
using them for de-duplication.
The current structure of TypeSerializer / TypeTableBuilder being a
single entry point that takes an unserialized type record, and then
hashes and de-duplicates it is not flexible enough to allow this.
At the same time, the existing TypeSerializer is already extremely
complex for this very reason -- it tries to be too many things. In
addition to serializing, hashing, and de-duplicating, ti also supports
splitting up field list records and adding continuations. All of this
functionality crammed into this one class makes it very complicated to
work with and hard to maintain.
To solve all of these problems, I've re-written everything from scratch
and split the functionality into separate pieces that can easily be
reused. The end result is that one class TypeSerializer is turned into 3
new classes SimpleTypeSerializer, ContinuationRecordBuilder, and
TypeTableBuilder, each of which in isolation is simple and
straightforward.
A quick summary of these new classes and their responsibilities are:
- SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of
bytes. Does not do any hashing. Every time you call it, it will
re-serialize and return bytes again. The same instance can be re-used
over and over to avoid re-allocations, and in exchange for this
optimization the bytes returned by the serializer only live until the
caller attempts to serialize a new record.
- ContinuationRecordBuilder : Turns a FieldList-like record into a series
of fragments. Does not do any hashing. Like SimpleTypeSerializer,
returns references to privately owned bytes, so the storage is
invalidated as soon as the caller tries to re-use the instance. Works
equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a
long-standing theoretical limitation of the previous implementation.
- TypeTableBuilder : Accepts sequences of bytes that the user has already
serialized, and inserts them by de-duplicating with a hash table. For
the sake of convenience and efficiency, this class internally stores a
SimpleTypeSerializer so that it can accept unserialized records. The
same is not true of ContinuationRecordBuilder. The user is required to
create their own instance of ContinuationRecordBuilder.
Differential Revision: https://reviews.llvm.org/D40518
llvm-svn: 319198
The type index is from the TPI stream, not the IPI stream. Fix the
dumper, fix type index discovery, and add a test in LLD.
Also improve the log message we emit when we fail to rewrite type
indices in LLD. That's how I found this bug.
llvm-svn: 316461
This adds type index discovery and dumper support for symbol record kind
0x1168, which is a list of inlined function ids. This symbol kind is
undocumented, but S_INLINEES is consistent with the existing
nomenclature.
Fixes PR34222
llvm-svn: 316398
The list of register ids was previously written out in a couple of dirrent
places. This puts it in a .def file and also adds a few more registers (e.g.
the x87 regs) which should lead to more readable dumps, but I didn't include
the whole list since that seems unnecessary.
X86_MC::initLLVMToSEHAndCVRegMapping is pretty ugly, but at least it's not
relying on magic constants anymore. The TODO of using tablegen still stands.
Differential revision: https://reviews.llvm.org/D38480
llvm-svn: 314821
We have llvm-readobj for dumping CodeView from object files, and
llvm-pdbutil has always been more focused on PDB. However,
llvm-pdbutil has a lot of useful options for summarizing debug
information in aggregate and presenting high level statistical
views. Furthermore, it's arguably better as a testing tool since
we don't have to write tests to conform to a state-machine like
structure where you match multiple lines in succession, each
depending on a previous match. llvm-pdbutil dumps much more
concisely, so it's possible to use single-line matches in many
cases where as with readobj tests you have to use multi-line
matches with an implicit state machine.
Because of this, I'm adding object file support to llvm-pdbutil.
In fact, this mirrors the cvdump tool from Microsoft, which also
supports both object files and pdb files. In the future we could
perhaps rename this tool llvm-cvutil.
In the meantime, this allows us to deep dive into object files
the same way we already can with PDB files.
llvm-svn: 312358
We were using a std::vector<> and resizing to MaxRecordLength,
which is ~64KB. We would then do this repeatedly often many
times in a tight loop, which was causing measurable performance
impact when linking PDBs.
Patch by Alex Telishev
Differential Revision: https://reviews.llvm.org/D36940
llvm-svn: 311375
When dumping, we were treating the S_INLINESITESYM as referring
to a type record, when it actually refers to an id record. We
had this correct in TypeIndexDiscovery, so our merging algorithm
should be fine, but we had it wrong in the dumper, which means it
would appear to work most of the time, unless the index was out
of bounds in the type stream, when it would fail. Fixed this, and
audited a few other cases to make them match the behavior in
TypeIndexDiscovery.
Also, I've now observed a new symbol record with kind 0x1168 which
I have no clue what it is, so to avoid crashing we have to just
print "Unknown Symbol Kind".
llvm-svn: 311117
Previously we were writing an empty globals stream. Windows
tools interpret this as "private symbols are not present in
this PDB", even when they are, so we need to fix this. Regardless,
without it we don't have information about global variables, so
we need to fix it anyway. This patch does that.
With this patch, the "lm" command in WinDbg correctly reports
that we have private symbols available, but the "dv" command
still refuses to display local variables.
Differential Revision: https://reviews.llvm.org/D36535
llvm-svn: 310743
The compiler outputs PROC32_ID symbols into the object files
for functions, and these symbols have an embedded type index
which, when copied to the PDB, refer to the IPI stream. However,
the symbols themselves are also converted into regular symbols
(e.g. S_GPROC32_ID -> S_GPROC32), and type indices in the regular
symbol records refer to the TPI stream. So this patch applies
two fixes to function records.
1. It converts ID symbols to the proper non-ID record type.
2. After remapping the type index from the object file's index
space to the PDB file/IPI stream's index space, it then
remaps that index to the TPI stream's index space by.
Besides functions, during the remapping process we were also
discarding symbol record types which we did not recognize.
In particular, we were discarding S_BPREL32 records, which is
what MSVC uses to describe local variables on the stack. So
this patch fixes that as well by copying them to the PDB.
Differential Revision: https://reviews.llvm.org/D36426
llvm-svn: 310394
The PDB "symbol stream" actually contains symbol records for the publics
and the globals stream. The globals and publics streams are essentially
hash tables that point into a single stream of records. In order to
match cvdump's behavior, we need to only dump symbol records referenced
from the hash table. This patch implements that, and then implements
global stream dumping, since it's just a subset of public stream
dumping.
Now we shouldn't see S_PROCREF or S_GDATA32 records when dumping
publics, and instead we should see those record in the globals stream.
llvm-svn: 309066
Summary:
We were treating the GUIDs in TypeServer2Record as strings, and the
non-ASCII bytes in the GUID would not round-trip through YAML.
We already had the PDB_UniqueId type portably represent a Windows GUID,
but we need to hoist that up to the DebugInfo/CodeView library so that
we can use it in the TypeServer2Record as well as in PDB parsing code.
Reviewers: inglorion, amccarth
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35495
llvm-svn: 308234
Summary:
This didn't do much to speed things up, but it implements a FIXME, and I
think it's a nice simplification. We don't need the record kind switch.
We're doing that ourselves.
Reviewers: ruiu, inglorion
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35496
llvm-svn: 308213
Summary:
Instead of wiring these through the CVTypeVisitor interface, clients
should inspect the CVTypeArray before visiting it and potentially load
up the type server's TPI stream if they need it.
No tests relied on this functionality because LLD was the only client.
Reviewers: ruiu
Subscribers: mgorny, hiraditya, zturner, llvm-commits
Differential Revision: https://reviews.llvm.org/D35394
llvm-svn: 308212
Summary:
This fixes type indices for SDK or CRT static archives. Previously we'd
try to look next to the archive object file path, which would not exist
on the local machine.
Also error out if we can't resolve a type server record. Hypothetically
we can recover from this error by discarding debug info for this object,
but that is not yet implemented.
Reviewers: ruiu, amccarth
Subscribers: aprantl, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35369
llvm-svn: 307946
Avoid duplicating DictScope with hand-written names everywhere. Print
the S_-prefixed symbol kind for every record. This should make it easier
to search for certain kinds of records when debugging PDB linking.
llvm-svn: 307732
I encountered these when linking LLD, which uses atls.lib. Those objects
appear to use these uncommon symbol records:
0x115E S_HEAPALLOCSITE
0x113D S_ENVBLOCK
0x1113 S_GTHREAD32
0x1153 S_FILESTATIC
llvm-svn: 307725
Type records have a unique type index, but symbol records do
not. Instead, symbol records refer to other symbol records
by referencing their offset in the symbol stream. In a sense
this is the analogue of the TypeIndex, but we are not printing
it in the dumper. Printing it not only gives us more useful
information when manually investigating the contents of a PDB,
but also allows us to write better tests by enabling us to
verify that fields that reference other symbol records do
so correctly.
Differential Revision: https://reviews.llvm.org/D34906
llvm-svn: 306890
Previously we had the -type-index option which would dump the record of
a single, but we had no way to follow the dependency graph backwards and
also dump all dependent types.
Having this option makes test-writing better, because we can limit the
test to only those records that are of importance for the thing we're
trying to test, which allows us to use things like CHECK-NEXT to reduce
fragility.
Differential Revision: https://reviews.llvm.org/D34899
llvm-svn: 306852
Summary:
The main complexity in adding symbol records is that we need to
"relocate" all the type indices. Type indices do not have anything like
relocations, an opaque data structure describing where to find existing
type indices for fixups. The linker just has to "know" where the type
references are in the symbol records. I added an overload of
`discoverTypeIndices` that works on symbol records, and it seems to be
able to link the standard library.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34432
llvm-svn: 305933
Summary:
This is a first step towards getting line info to show up in VS and
windbg. So far, only llvm-pdbutil can parse the PDBs that we produce.
cvdump doesn't like something about our file checksum tables. I'll have
to dig into that next.
This patch adds a new DebugSubsectionRecordBuilder which takes bytes
directly from some other producer, such as a linker, and sticks it into
the PDB. Line tables only need to be relocated. No data needs to be
rewritten.
File checksums and string tables, on the other hand, need to be re-done.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34257
llvm-svn: 305713
Merge the functionality into the random access type collection.
This class was only being used in 2 places, so getting rid of it
simplifies the code.
llvm-svn: 305653
Suppose we had a type index offsets array with a boundary at type index
N. Then you request the name of the type with index N+1, and that name
requires the name of index N-1 (think a parameter list, for example). We
didn't handle this, and we would print something like (<unknown UDT>,
<unknown UDT>).
The fix for this is not entirely trivial, and speaks to a larger
problem. I think we need to kill TypeDatabase, or at the very least kill
TypeDatabaseVisitor. We need a thing that doesn't do any caching
whatsoever, just given a type index it can compute the type name "the
slow way". The reason for the bug is that we don't have anything like
that. Everything goes through the type database, and if we've visited a
record, then we're "done". It doesn't know how to do the expensive thing
of re-visiting dependent records if they've not yet been visited.
What I've done here is more or less copied the code (albeit greatly
simplified) from TypeDatabaseVisitor, but wrapped it in an interface
that just returns a std::string. The logic of caching the name is now in
LazyRandomTypeCollection. Eventually I'd like to move the record
database here as well and the visited record bitfield here as well, at
which point we can actually just delete TypeDatabase. I don't see any
reason for it if a "sequential" collection is just a special case of a
random access collection with an empty partial offsets array.
Differential Revision: https://reviews.llvm.org/D34297
llvm-svn: 305612