Since C++11, the C++ standard has a forward progress guarantee
[intro.progress], so all such functions must have the `mustprogress`
requirement. In addition, from C11 and onwards, loops without a non-zero
constant conditional or no conditional are also required to make
progress (C11 6.8.5p6). This patch implements these attribute deductions
so they can be used by the optimization passes.
Differential Revision: https://reviews.llvm.org/D86841
Before this patch, CGLoop would dump all transformations for a loop into
a single LoopID without encoding any order in which to apply them.
rL348944 added the possibility to encode a transformation order using
followup-attributes.
When a loop has more than one transformation, use the follow-up
attribute define the order in which they are applied. The emitted order
is the defacto order as defined by the current LLVM pass pipeline,
which is:
LoopFullUnrollPass
LoopDistributePass
LoopVectorizePass
LoopUnrollAndJamPass
LoopUnrollPass
MachinePipeliner
This patch should therefore not change the assembly output, assuming
that all explicit transformations can be applied, and no implicit
transformations in-between. In the former case,
WarnMissedTransformationsPass should emit a warning (except for
MachinePipeliner which is not implemented yet). The latter could be
avoided by adding 'llvm.loop.disable_nonforced' attributes.
Because LoopUnrollAndJamPass processes a loop nest, generation of the
MDNode is delayed to after the inner loop metadata have been processed.
A temporary LoopID is therefore used to annotate instructions and
RAUW'ed by the actual LoopID later.
Differential Revision: https://reviews.llvm.org/D57978
llvm-svn: 357415
Instead of generating llvm.mem.parallel_loop_access metadata, generate
llvm.access.group on instructions and llvm.loop.parallel_accesses on
loops. There is one access group per generated loop.
This is clang part of D52116/r349725.
Differential Revision: https://reviews.llvm.org/D52117
llvm-svn: 349823