The new method name/behavior more closely models the way it was being used.
It also fixes an assertion that can occur when using the new ORC Core APIs,
where flags alone don't necessarily provide enough context to decide whether
the caller is responsible for materializing a given symbol (which was always
the reason this API existed).
The default implementation of getResponsibilitySet uses lookupFlags to determine
responsibility as before, so existing JITSymbolResolvers should continue to
work.
llvm-svn: 340874
The callable flag can be used to indicate that a symbol is callable. If present,
the symbol is callable. If absent, the symbol may or may not be callable (the
client must determine this by context, for example by examining the program
representation that will provide the symbol definition).
This flag will be used in the near future to enable creation of lazy compilation
stubs based on SymbolFlagsMap instances only (without having to provide
additional information to determine which symbols need stubs).
llvm-svn: 338649
Resolvers are required to find results for all requested symbols or return an
error, but if a resolver fails to adhere to this contract (by returning results
for only a subset of the requested symbols) then this code will infinite loop.
This assertion catches resolvers that fail to adhere to the contract.
llvm-svn: 334536
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
This can be used to extract the symbol table from a RuntimeDyld instance prior
to disposing of it.
This patch also updates RTDyldObjectLinkingLayer to use the new method, rather
than requesting symbols one at a time via getSymbol.
llvm-svn: 327476
orc::SymbolResolver to JITSymbolResolver adapter.
The new orc::SymbolResolver interface uses asynchronous queries for better
performance. (Asynchronous queries with bulk lookup minimize RPC/IPC overhead,
support parallel incoming queries, and expose more available work for
distribution). Existing ORC layers will soon be updated to use the
orc::SymbolResolver API rather than the legacy llvm::JITSymbolResolver API.
Because RuntimeDyld still uses JITSymbolResolver, this patch also includes an
adapter that wraps an orc::SymbolResolver with a JITSymbolResolver API.
llvm-svn: 323073
ExternalSymbolMap now stores the string key (rather than using a StringRef),
as the object file backing the key may be removed at any time.
llvm-svn: 323001
Bulk queries reduce IPC/RPC overhead for cross-process JITing and expose
opportunities for parallel compilation.
The two new query methods are lookupFlags, which finds the flags for each of a
set of symbols; and lookup, which finds the address and flags for each of a
set of symbols. (See doxygen comments for more details.)
The existing JITSymbolResolver class is renamed LegacyJITSymbolResolver, and
modified to extend the new JITSymbolResolver class using the following scheme:
- lookupFlags is implemented by calling findSymbolInLogicalDylib for each of the
symbols, then returning the result of calling getFlags() on each of these
symbols. (Importantly: lookupFlags does NOT call getAddress on the returned
symbols, so lookupFlags will never trigger materialization, and lookupFlags will
never call findSymbol, so only symbols that are part of the logical dylib will
return results.)
- lookup is implemented by calling findSymbolInLogicalDylib for each symbol and
falling back to findSymbol if findSymbolInLogicalDylib returns a null result.
Assuming a symbol is found its getAddress method is called to materialize it and
the result (if getAddress succeeds) is stored in the result map, or the error
(if getAddress fails) is returned immediately from lookup. If any symbol is not
found then lookup returns immediately with an error.
This change will break any out-of-tree derivatives of JITSymbolResolver. This
can be fixed by updating those classes to derive from LegacyJITSymbolResolver
instead.
llvm-svn: 322913
This patch adds support for thumb relocations to RuntimeDyldMachOARM, and adds
a target-specific flags field to JITSymbolFlags (so that on ARM we can record
whether each symbol is Thumb-mode code).
RuntimeDyldImpl::emitSection is modified to ensure that stubs memory is
correctly aligned based on the size returned by getStubAlignment().
llvm-svn: 310517
This patch updates the ORC layers and utilities to return and propagate
llvm::Errors where appropriate. This is necessary to allow ORC to safely handle
error cases in cross-process and remote JITing.
llvm-svn: 307350
After the N64 static relocation model support was added to llvm it is required to add its support in RuntimeDyld also because lldb uses ExecutionEngine for evaluating expressions.
Reviewed by sdardis
Differential: D31649
llvm-svn: 305997
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
Debug info sections, (or non-SHF_ALLOC sections in general) should be
linked as if their load address was zero to emulate the behavior of the
static linker.
This bug was discovered because it was breaking lldb expression evaluation on
linux.
Reviewers: lhames
Subscribers: aprantl, eugene, clayborg, lldb-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D32899
llvm-svn: 303239
frames.
RuntimeDyld was previously responsible for tracking allocated EH frames, but it
makes more sense to have the RuntimeDyld::MemoryManager track them (since the
frames are allocated through the memory manager, and written to memory owned by
the memory manager). This patch moves the frame tracking into
RTDyldMemoryManager, and changes the deregisterFrames method on
RuntimeDyld::MemoryManager from:
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size);
to:
void deregisterEHFrames();
Separating this responsibility will allow ORC to continue to throw the
RuntimeDyld instances away post-link (saving a few dozen bytes per lazy
function) while properly deregistering frames when modules are unloaded.
This patch also updates ORC to call deregisterEHFrames when modules are
unloaded. This fixes a bug where an exception that tears down the JIT can then
unwind through dangling EH frames that have been deallocated but not
deregistered, resulting in UB.
For people using SectionMemoryManager this should be pretty much a no-op. For
people with custom allocators that override registerEHFrames/deregisterEHFrames,
you will now be responsible for tracking allocated EH frames.
Reviewed in https://reviews.llvm.org/D32829
llvm-svn: 302589
When the ProcessAllSections flag (introduced in r204398) is set RuntimeDyld is
supposed to make a call to the client's memory manager for every section in each
object that is loaded. Due to some missing checks, this was not happening in all
cases. This patch adds the missing cases, and fixes the Orc unit test that
verifies correct behavior for ProcessAllSections (The unit test had been
silently bailing out due to an ordering issue: a change in the test order meant
that this unit-test was running before the native target was registered. This
issue has also been fixed in this patch).
This fixes <rdar://problem/22789965>
llvm-svn: 299449
This patch implements two GOT relocations:
R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
Differential revision: https://reviews.llvm.org/D28571
llvm-svn: 294191
N32 relocations are only correct for individual relocations at the moment.
Support for relocation composition will follow in a later patch.
Patch By: Daniel Sanders
Reviwers: vkalintiris, atanasyan
Differential Revision: https://reviews.llvm.org/D27467
llvm-svn: 289532
This patch causes RuntimeDyld to check for existing definitions when it
encounters weak symbols. If a definition already exists then the new weak
definition is discarded. All symbol lookups within a "logical dylib" should now
agree on the address of any given weak symbol. This allows the JIT to better
match the behavior of the static linker for C++ code.
This support is only partial, as it does not allow strong definitions that
occur after the first weak definition (in JIT symbol lookup order) to override
the previous weak definitions. Support for this will be added in a future
patch.
llvm-svn: 278065
Common symbol support in ORC was broken in r270716 when the symbol resolution
rules in RuntimeDyld were changed. With the switch to lazily materialized
symbols in r277386, common symbols can be supported by having
RuntimeDyld::emitCommonSymbols search for (but not materialize!) definitions
elsewhere in the logical dylib.
This patch adds the 'Common' flag to JITSymbolFlags, and the necessary check
to RuntimeDyld::emitCommonSymbols.
llvm-svn: 277397
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
a good error message to be produced.
This is nearly the last libObject interface that used ErrorOr and the last one
that appears in llvm/include/llvm/Object/MachO.h . For Mach-O objects this is
just a clean up because it’s version of getSymbolAddress() can’t return an
error.
I will leave it to the experts on COFF and ELF to actually add meaning full
error messages in their tests if they wish. And also leave it to these experts
to change the last two ErrorOr interfaces in llvm/include/llvm/Object/ObjectFile.h
for createCOFFObjectFile() and createELFObjectFile() if they wish.
Since there are no test cases for COFF and ELF error cases with respect to
getSymbolAddress() in the test suite this is no functional change (NFC).
llvm-svn: 273701
searching for external symbols, and fall back to the SymbolResolver::findSymbol
method if the former returns null.
This makes RuntimeDyld behave more like a static linker: Symbol definitions
from within the current module's "logical dylib" will be preferred to
external definitions. We can build on this behavior in the future to properly
support weak symbol handling.
Custom symbol resolvers that override the findSymbolInLogicalDylib method may
notice changes due to this patch. Clients who have not overridden this method
should generally be unaffected, however users of the OrcMCJITReplacement class
may notice changes.
llvm-svn: 270716
Produce another specific error message for a malformed Mach-O file when a symbol’s
section index is more than the number of sections. The existing test case in test/Object/macho-invalid.test
for macho-invalid-section-index-getSectionRawName now reports the error with the message indicating
that a symbol at a specific index has a bad section index and that bad section index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same.
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
"// TODO: Actually report errors helpfully" and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
llvm-svn: 268298
Also replaces a number of calls to report_fatal_error with Error returns.
The plumbing will make it easier to return errors originating in libObject.
Replacing report_fatal_errors with Error returns will give JIT clients the
opportunity to recover gracefully when the JIT is unable to produce/relocate
code, as well as providing meaningful error messages that can be used to file
bug reports.
llvm-svn: 267776
The previous allocation code was over-estimating the amount of memory required.
No test case: we don't currently have a good way to detect conervative
over-allocation.
llvm-svn: 267041
Produce another specific error message for a malformed Mach-O file when a symbol’s
string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test
for macho-invalid-symbol-name-past-eof now reports the error with the message indicating
that a symbol at a specific index has a bad sting index and that bad string index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same. There is some
code for this that could be factored into a routine but I would like to leave that for
the code owners post-commit to do as they want for handling an llvm::Error. An
example of how this could be done is shown in the diff in
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine
already for std::error_code so I added one like it for llvm::Error .
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there fixes needed to lld that goes along with this that I will commit right after this.
So expect lld not to built after this commit and before the next one.
llvm-svn: 266919
in the test suite. While this is not really an interesting tool and option to run
on a Mach-O file to show the symbol table in a generic libObject format
it shouldn’t crash.
The reason for the crash was in MachOObjectFile::getSymbolType() when it was
calling MachOObjectFile::getSymbolSection() without checking its return value
for the error case.
What makes this fix require a fair bit of diffs is that the method getSymbolType() is
in the class ObjectFile defined without an ErrorOr<> so I needed to add that all
the sub classes. And all of the uses needed to be updated and the return value
needed to be checked for the error case.
The MachOObjectFile version of getSymbolType() “can” get an error in trying to
come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol
symbol type is an N_SECT type because the code is trying to select from the
SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type.
And it needs the Mach-O section to use isData() and isBSS to determine if
it will return SymbolRef::ST_Data.
One other possible fix I considered is to simply return SymbolRef::ST_Other
when MachOObjectFile::getSymbolSection() returned an error. But since in
the past when I did such changes that “ate an error in the libObject code” I
was asked instead to push the error out of the libObject code I chose not
to implement the fix this way.
As currently written both the COFF and ELF versions of getSymbolType()
can’t get an error. But if isReservedSectionNumber() wanted to check for
the two known negative values rather than allowing all negative values or
the code wanted to add the same check as in getSymbolAddress() to use
getSection() and check for the error then these versions of getSymbolType()
could return errors.
At the end of the day the error printed now is the generic “Invalid data was
encountered while parsing the file” for object_error::parse_failed. In the
future when we thread Lang’s new TypedError for recoverable error handling
though libObject this will improve. And where the added // Diagnostic(…
comment is, it would be changed to produce and error message
like “bad section index (42) for symbol at index 8” for this case.
llvm-svn: 264187
This is a more generic version of the MCJITMemoryManager::notifyObjectLoaded
method: It provides only a RuntimeDyld reference (rather than an
ExecutionEngine), and so can be used with ORC JIT stacks.
llvm-svn: 257296
RuntimeDyld::MemoryManager.
The RuntimeDyld::MemoryManager::reserveAllocationSpace method is called when
object files are loaded, and gives clients a chance to pre-allocate memory for
all segments. Previously only the size of each segment (code, ro-data, rw-data)
was supplied but not the alignment. This hasn't caused any problems so far, as
most clients allocate via the MemoryBlock interface which returns page-aligned
blocks. Adding alignment arguments enables finer grained allocation while still
satisfying alignment restrictions.
llvm-svn: 257294
managers.
Prior to this patch, recursive finalization (where finalization of one
RuntimeDyld instance triggers finalization of another instance on which the
first depends) could trigger memory access failures: When the inner (dependent)
RuntimeDyld instance and its memory manager are finalized, memory allocated
(but not yet relocated) by the outer instance is locked, and relocation in the
outer instance fails with a memory access error.
This patch adds a latch to the RuntimeDyld::MemoryManager base class that is
checked by a new method: RuntimeDyld::finalizeWithMemoryManagerLocking, ensuring
that shared memory managers are only finalized by the outermost RuntimeDyld
instance.
This allows ORC clients to supply the same memory manager to multiple calls to
addModuleSet. In particular it enables the use of user-supplied memory managers
with the CompileOnDemandLayer which must reuse the supplied memory manager for
each function that is lazily compiled.
llvm-svn: 257263