In the android-arm ndk there is a duplicated typedef in link.h
and in unwind.h causing build erros. This CL introduces a HACK
to prevent LLVM from finding unwind.h to fix the issue.
llvm-svn: 270201
If an inline function is observed but unused in a translation unit, dummy
coverage mapping data with zero hash is stored for this function.
If such a coverage mapping section came earlier than real one, the latter
was ignored. As a result, llvm-cov was unable to show coverage information
for those functions.
Differential Revision: http://reviews.llvm.org/D20286
llvm-svn: 270194
Move the ExceptionHandling enumeration into TargetOptions and introduce a field
to track the desired exception model. This will allow us to set the exception
model from the frontend (needed to optionally use SjLj EH on other targets where
zero-cost is available and preferred).
llvm-svn: 270178
The ``nprocs`` command does not exist under Mac OSX so use
``sysctl`` instead on that platform.
Whilst I'm here
* Use ``pclose()`` instead of ``fclose()`` which the ``popen()``
documentation says should be used.
* Check for errors that were previously unhandled.
Differential Revision: http://reviews.llvm.org/D20409
llvm-svn: 270172
an instruction.
Use the previously introduced RepairingPlacement class to split the code
computing the repairing placement from the code doing the actual
placement. That way, we will be able to consider different placement and
then, only apply the best one.
llvm-svn: 270168
When assigning the register banks we may have to insert repairing code
to move already assigned values accross register banks.
Introduce a few helper classes to keep track of what is involved in the
repairing of an operand:
- InsertPoint and its derived classes record the positions, in the CFG,
where repairing has to be inserted.
- RepairingPlacement holds all the insert points for the repairing of an
operand plus the kind of action that is required to do the repairing.
This is going to be used to keep track of how the repairing should be
done, while comparing different solutions for an instruction. Indeed, we
will need the repairing placement to capture the cost of a solution and
we do not want to compute it a second time when we do the actual
repairing.
llvm-svn: 270167
register bank twice.
Prior to this change, we were checking if the assignment for the current
machine operand was matching, then we would check if the mismatch
requires to insert repair code.
We actually already have this information from the first check, so just
pass it along.
NFCI.
llvm-svn: 270166
Sorry for the lack testcase. There is one in the pr, but it depends on
std::sort and the .ll version is 110 lines, so I don't think it is
wort it.
The bug was that we were sorting after adding a terminator, and the
sorting algorithm could end up putting the terminator in the middle of
the List vector.
With that we would create a Spans map entry keyed on nullptr which would
then be added to CUs and fail in that sorting.
llvm-svn: 270165
Some people have weird CI systems that run each test subdirectory
independently without access to other parallel trees.
Unfortunately, this means we have to suffer some duplication until Art
can sort out how to share these types.
llvm-svn: 270164
This helper class will be used to represent the cost of mapping an
instruction to a specific register bank.
The particularity of these costs is that they are mostly local, thus the
frequency of the basic block is irrelevant. However, for few
instructions (e.g., phis and terminators), the cost may be non-local and
then, we need to account for the frequency of the involved basic blocks.
This will be used by the greedy mode I am working on.
llvm-svn: 270163
values for the pc or return address register.
On ios with arm64 and a binary that has multiple functions without
individual symbol boundaries, we end up with an assembly profile
unwind plan that says lr=<same> - that is, the link register contents
are unmodified from the caller's value. This gets the unwinder in
a loop.
When we're off the 0th frame, we never want to look to a caller for
a pc or return-address register value.
Add checks to ReadGPRValue and ReadRegister to prevent both the pc
and ra register values from recursing.
If this causes problems with backtraces on android, let me know or
back it out and I'll look into it -- but I think these are
straightforward and don't expect problems.
<rdar://problem/24610365>
llvm-svn: 270162
The lexer sets the end location of macro arguments incorrectly *if*,
while merging consecutive args to fit into a single SLocEntry, it finds
args which come from different macro files.
Fix the issue by using separate SLocEntries in this situation.
This fixes a code coverage crasher (rdar://problem/26181005). Because
the lexer reported end locations for certain macro args incorrectly, we
would generate bogus coverage mappings with negative line offsets.
Reviewed-by: akyrtzi
Differential Revision: http://reviews.llvm.org/D20401
llvm-svn: 270160
Now that MachO load command fields are fully covered we can fill unaccounted for bytes with 0. That allows us to sparsely specify YAML to simplify tests.
Simplifying load_commands test accordingly.
llvm-svn: 270158
The function strcmp() can return any value, not just {-1,0,1} : "The strcmp(const char *s1, const char *s2) function returns an integer greater than, equal to, or less than zero, accordingly as the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2." [C11 7.24.4.2p3]
https://llvm.org/bugs/show_bug.cgi?id=23790http://reviews.llvm.org/D16317
llvm-svn: 270154
Before r257832, the threshold used by SimpleInliner was explicitly specified or generated from opt levels and passed to the base class Inliner's constructor. There, it was first overridden by explicitly specified -inline-threshold. The refactoring in r257832 did not preserve this behavior for all opt levels. This change brings back the original behavior.
Differential Revision: http://reviews.llvm.org/D20452
llvm-svn: 270153