Commit Graph

266 Commits

Author SHA1 Message Date
Adrian Prantl 4a9292b127 Allow the LTO code generator to strip invalid debug info from the input.
This patch introduces a new option -lto-strip-invalid-debug-info, which
drops malformed debug info from the input.

The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.

rdar://problem/25818489
http://reviews.llvm.org/D19987

llvm-svn: 268936
2016-05-09 17:37:33 +00:00
Davide Italiano f54f2f0893 [PM] Port Interprocedural SCCP to the new pass manager.
llvm-svn: 268684
2016-05-05 21:05:36 +00:00
Mehdi Amini 5eba657ff3 Revert "LTOCodeGenerator: handle correctly "unnamed" symbol"
This reverts commit r268658.

I incorrectly diagnose this as the source of an assertion during an
LTO bootstrap of clang.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268680
2016-05-05 20:44:21 +00:00
Mehdi Amini 8eb3397a73 Degrade assertions to a warning in LTOCodeGenerator for preserved linkonce
The assertions were assuming that the linker will not ask to preserve
a global that is internal or available_externally, as it does not
really make sense. In practice this break the bootstrap of clang,
I degrade to a warning for now.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268671
2016-05-05 20:05:33 +00:00
Mehdi Amini 2ee1874aa8 LTOCodeGenerator: handle correctly "unnamed" symbol
This should fix the assertions in a clang LTO bootstrap we're seeing.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268658
2016-05-05 18:14:55 +00:00
Mehdi Amini 022b5bcb7a LTOCodeGenerator: add linkonce(_odr) to "llvm.compiler.used" when present in "MustPreserve" set
If the linker requested to preserve a linkonce function, we should
honor this even if we drop all uses.
We explicitely avoid turning them into weak_odr (unlike the first
version of this patch in r267644), because the codegen can be
different on Darwin: because of `llvm::canBeOmittedFromSymbolTable()`
we may emit the symbol as weak_def_can_be_hidden instead of
weak_definition.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268607
2016-05-05 05:14:24 +00:00
Mehdi Amini 752ffe9c5f Revert "LTOCodeGenerator: turns linkonce(_odr) into weak_(odr) when present "MustPreserve" set"
This reverts commit r267644. Turning linkonce_odr into weak_odr is
a sementic change on Darwin: because of
`llvm::canBeOmittedFromSymbolTable()` we may emit the symbol as
weak_def_can_be_hidden instead of weak_definition.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268606
2016-05-05 05:14:20 +00:00
Davide Italiano 164b9bc6fe [PM] Port ConstantMerge to the new pass manager.
llvm-svn: 268582
2016-05-05 00:51:09 +00:00
Davide Italiano 66228c4cf1 [IPO/GlobalDCE] Port to the new pass manager.
Differential Revision:  http://reviews.llvm.org/D19782

llvm-svn: 268425
2016-05-03 19:39:15 +00:00
Peter Collingbourne edf8432480 LTO: Don't bother trying to mangle unnamed globals, as they can't be preserved with MustPreserveSymbols.
Summary: Should fix sanitizer-windows bot.

Reviewers: joker.eph

Subscribers: llvm-commits, joker.eph

Differential Revision: http://reviews.llvm.org/D19635

llvm-svn: 267820
2016-04-27 23:48:11 +00:00
Mehdi Amini c7b950171d Revert "Support "preserving" the summary information when using setModule() API in LTOCodeGenerator"
This reverts commit r267665.
ASAN shows that there is a use of undefined value.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267668
2016-04-27 05:11:44 +00:00
Mehdi Amini 360ed847bc Support "preserving" the summary information when using setModule() API in LTOCodeGenerator
Another attempt at r267655...

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267665
2016-04-27 04:24:10 +00:00
Mehdi Amini a1b8b6cd56 Revert "Support "preserving" the summary information when using setModule() API in LTOCodeGenerator"
This reverts commit r267657, r267656, and r267655.
The test does not pass on multiple bots, I'm unsure why yet but let's unbreak them.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267664
2016-04-27 03:34:28 +00:00
Mehdi Amini e2a65fe5ec Support "preserving" the summary information when using setModule() API in LTOCodeGenerator
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267655
2016-04-27 01:46:48 +00:00
Mehdi Amini da168fbc2e LTOCodeGenerator: turns linkonce(_odr) into weak_(odr) when present "MustPreserve" set
Summary:
If the linker requested to preserve a linkonce function, we should
honor this even if we drop all uses.

Reviewers: dexonsmith

Subscribers: llvm-commits, joker.eph

Differential Revision: http://reviews.llvm.org/D19527

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267644
2016-04-27 00:32:02 +00:00
Justin Bogner 4563a06cee PM: Port Internalize to the new pass manager
llvm-svn: 267596
2016-04-26 20:15:52 +00:00
Justin Bogner 1a07501379 PM: Port GlobalOpt to the new pass manager
llvm-svn: 267499
2016-04-26 00:28:01 +00:00
Justin Bogner 395c2127ed PM: Port DCE to the new pass manager
Also add a very basic test, since apparently there aren't any tests
for DCE whatsoever to add the new pass version to.

llvm-svn: 267196
2016-04-22 19:40:41 +00:00
Duncan P. N. Exon Smith b011ad7330 LTO: Verify the input even if optimize() isn't called
Clients may call writeMergedModules before calling optimize, or call
compileOptimized without calling optimize.  Make sure they don't sneak
past the verifier.  This adds LTOCodeGenerator::verifyMergedModuleOnce,
and calls it from writeMergedModule, optimize, and codegenOptimized.

I couldn't find a good way to test this.  I tried writing broken IR to
send into llvm-lto, but LTOCodeGenerator doesn't understand textual IR,
and assembler runs the verifier itself anyway.  Checking in
valid-but-doesn't-verify bitcode here doesn't seem valuable.

llvm-svn: 266894
2016-04-20 17:48:22 +00:00
Duncan P. N. Exon Smith ed8fdb2a0e IR: Rename API for enabling ODR uniquing of DITypes, NFC
As per David's review, rename everything in the new API for ODR type
uniquing of debug info.

    ensureDITypeMap  => enableDebugTypeODRUniquing
    destroyDITypeMap => disableDebugTypeODRUniquing
    hasDITypeMap     => isODRUniquingDebugTypes

llvm-svn: 266713
2016-04-19 04:55:25 +00:00
Rafael Espindola 3c1c9875b9 Keep only the splitCodegen version that takes a factory.
This makes it much easier to see that all created TargetMachines are
equivalent.

llvm-svn: 266564
2016-04-17 18:42:27 +00:00
Duncan P. N. Exon Smith 5ab2be094e IR: Use an explicit map for debug info type uniquing
Rather than relying on the structural equivalence of DICompositeType to
merge type definitions, use an explicit map on the LLVMContext that
LLParser and BitcodeReader consult when constructing new nodes.
Each non-forward-declaration DICompositeType with a non-empty
'identifier:' field is stored/loaded from the type map, and the first
definiton will "win".

This map is opt-in: clients that expect ODR types from different modules
to be merged must call LLVMContext::ensureDITypeMap.

  - Clients that just happen to load more than one Module in the same
    LLVMContext won't magically merge types.

  - Clients (like LTO) that want to continue to merge types based on ODR
    identifiers should opt-in immediately.

I have updated LTOCodeGenerator.cpp, the two "linking" spots in
gold-plugin.cpp, and llvm-link (unless -disable-debug-info-type-map) to
set this.

With this in place, it will be straightforward to remove the DITypeRef
concept (i.e., referencing types by their 'identifier:' string rather
than pointing at them directly).

llvm-svn: 266549
2016-04-17 03:58:21 +00:00
Mehdi Amini ce23e9702e Simplify LTOInternalize into UpdateLLVMCompilerUsed
It is now only doing the update to the llvm.compiler_used global.
The client has to call separately the internalization stage.
Hopefully the code is simpler to understand this way.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266174
2016-04-13 06:32:46 +00:00
Mehdi Amini deee003a58 Move "ExternalSymbols" out of LTOInternalize (NFC)
This is not really related to internalization per se.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266170
2016-04-13 05:36:06 +00:00
Mehdi Amini 4078709957 Refactor Internalization pass to use as a callback instead of a StringSet (NFC)
This will save a bunch of copies / initialization of intermediate
datastructure, and (hopefully) simplify the code.

This also abstract the symbol preservation mechanism outside of the
Internalization pass into the client code, which is not forced
to keep a map of strings for instance (ThinLTO will prefere hashes).

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266163
2016-04-13 04:20:32 +00:00
Mehdi Amini f59f2bb1b5 Refactor the Internalize stage of libLTO in a separate file (NFC)
This is intended to be shared by the ThinLTOCodeGenerator.

Note that there is a change in the way the verifier is run, previously
it was ran as a Pass on the merged module during internalization.
While now the verifier is called explicitely on the merged module
outside of the internalize "pass pipeline".

What remains strange in the API is the fact that `DisableVerify` in
the API does not disable this initial verifier.

Differential Revision: http://reviews.llvm.org/D19000

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266047
2016-04-12 06:34:10 +00:00
Evgeniy Stepanov 268826a287 [gold] Save bitcode for module partitions (save-temps + split codegen).
llvm-svn: 265583
2016-04-06 18:32:13 +00:00
Chandler Carruth 89c45a162f [PM] Port GVN to the new pass manager, wire it up, and teach a couple of
tests to run GVN in both modes.

This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.

Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.

I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.

Differential Revision: http://reviews.llvm.org/D18019

llvm-svn: 263208
2016-03-11 08:50:55 +00:00
Mehdi Amini 1592cb9aa1 Rename -discard-value-names into -lto-discard-value-names in libLLVMLTO
This is avoiding a naming conflict with opt and llc.
While opt and llc don't link to LTO usually, users that are building a
monolithic libLLVM.dylib and linking the tools to it would have a
runtime error because of the duplicate cl::opt registration.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263127
2016-03-10 17:06:52 +00:00
Mehdi Amini 09b4a8daa3 Add a flag to the LLVMContext to disable name for Value other than GlobalValue
Summary:
This is intended to be a performance flag, on the same level as clang
cc1 option "--disable-free". LLVM will never initialize it by default,
it will be up to the client creating the LLVMContext to request this
behavior. Clang will do it by default in Release build (just like
--disable-free).

"opt" and "llc" can opt-in using -disable-named-value command line
option.

When performing LTO on llvm-tblgen, the initial merging of IR peaks
at 92MB without this patch, and 86MB after this patch,setNameImpl()
drops from 6.5MB to 0.5MB.
The total link time goes from ~29.5s to ~27.8s.

Compared to a compile-time flag (like the IRBuilder one), it performs
very close. I profiled on SROA and obtain these results:

 420ms with IRBuilder that preserve name
 372ms with IRBuilder that strip name
 375ms with IRBuilder that preserve name, and a runtime flag to strip

Reviewers: chandlerc, dexonsmith, bogner

Subscribers: joker.eph, llvm-commits

Differential Revision: http://reviews.llvm.org/D17946

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263086
2016-03-10 01:28:54 +00:00
Chandler Carruth 9c4ed175c2 [PM] Port the PostOrderFunctionAttrs pass to the new pass manager and
convert one test to use this.

This is a particularly significant milestone because it required
a working per-function AA framework which can be queried over each
function from within a CGSCC transform pass (and additionally a module
analysis to be accessible). This is essentially *the* point of the
entire pass manager rewrite. A CGSCC transform is able to query for
multiple different function's analysis results. It works. The whole
thing appears to actually work and accomplish the original goal. While
we were able to hack function attrs and basic-aa to "work" in the old
pass manager, this port doesn't use any of that, it directly leverages
the new fundamental functionality.

For this to work, the CGSCC framework also has to support SCC-based
behavior analysis, etc. The only part of the CGSCC pass infrastructure
not sorted out at this point are the updates in the face of inlining and
running function passes that mutate the call graph.

The changes are pretty boring and boiler-plate. Most of the work was
factored into more focused preperatory patches. But this is what wires
it all together.

llvm-svn: 261203
2016-02-18 11:03:11 +00:00
Adam Nemet 106fedab6f [LTO] Support Statistics
Summary:
I thought -Xlinker -mllvm -Xlinker -stats worked at some point but maybe
it never did.

For clang, I believe that stats are printed from cc1_main.  This patch
also prints them for LTO, specifically right after codegen happens.

I only looked at the C API for LTO briefly to see if this is a good
place.  Probably there are still cases where this wouldn't be printed
but it seems to be working for the common case.  I also experimented
putting this in the LTOCodeGenerator destructor but that didn't trigger
for me because ld64 does not destroy the LTOCodeGenerator.

Reviewers: dexonsmith, joker.eph

Subscribers: rafael, joker.eph, llvm-commits

Differential Revision: http://reviews.llvm.org/D17302

llvm-svn: 261013
2016-02-16 21:41:51 +00:00
Tobias Edler von Koch 8ecaf69291 [LTO] Restore original linkage of externals prior to splitting
Summary:
This is a companion patch for http://reviews.llvm.org/D16124.

Internalized symbols increase the size of strongly-connected components in
SCC-based module splitting and thus reduce the amount of parallelism. This
patch records the original linkage of non-local symbols prior to
internalization and then restores it just before splitting/CodeGen. This is
also useful for cases where the linker requires symbols to remain external, for
instance, so they can be placed according to linker script rules.

It's currently under its own flag (-restore-globals) but should eventually
share a common flag with D16124.

Reviewers: joker.eph, pcc

Subscribers: slarin, llvm-commits, joker.eph

Differential Revision: http://reviews.llvm.org/D16229

llvm-svn: 258100
2016-01-18 23:24:54 +00:00
Chandler Carruth 1926b70e37 [attrs] Split the late-revisit pattern for deducing norecurse in
a top-down manner into a true top-down or RPO pass over the call graph.

There are specific patterns of function attributes, notably the
norecurse attribute, which are most effectively propagated top-down
because all they us caller information.

Walk in RPO over the call graph SCCs takes the form of a module pass run
immediately after the CGSCC pass managers postorder walk of the SCCs,
trying again to deduce norerucrse for each singular SCC in the call
graph.

This removes a very legacy pass manager specific trick of using a lazy
revisit list traversed during finalization of the CGSCC pass. There is
no analogous finalization step in the new pass manager, and a lazy
revisit list is just trying to produce an RPO iteration of the call
graph. We can do that more directly if more expensively. It seems
unlikely that this will be the expensive part of any compilation though
as we never examine the function bodies here. Even in an LTO run over
a very large module, this should be a reasonable fast set of operations
over a reasonably small working set -- the function call graph itself.

In the future, if this really is a compile time performance issue, we
can look at building support for both post order and RPO traversals
directly into a pass manager that builds and maintains the PO list of
SCCs.

Differential Revision: http://reviews.llvm.org/D15785

llvm-svn: 257163
2016-01-08 10:55:52 +00:00
Teresa Johnson bef543635a Rename variables to reflect linker split (NFC)
Renamed variables to be more reflective of whether they are
an instance of Linker, IRLinker or ModuleLinker. Also fix a stale
comment.

llvm-svn: 256011
2015-12-18 19:28:59 +00:00
Rafael Espindola 434e956181 Change linkInModule to take a std::unique_ptr.
Passing in a std::unique_ptr should help find errors when the module
is used after being linked into another module.

llvm-svn: 255842
2015-12-16 23:16:33 +00:00
Rafael Espindola 9d2bfc4874 Use diagnostic handler in the LLVMContext
This patch converts code that has access to a LLVMContext to not take a
diagnostic handler.

This has a few advantages

* It is easier to use a consistent diagnostic handler in a single program.
* Less clutter since we are not passing a handler around.

It does make it a bit awkward to implement some C APIs that return a
diagnostic string. I will propose new versions of these APIs and
deprecate the current ones.

llvm-svn: 255571
2015-12-14 23:17:03 +00:00
Rafael Espindola f85e9729e9 MSVC complains about this being ambiguous.
llvm-svn: 254782
2015-12-04 22:26:21 +00:00
Rafael Espindola f49a38fc08 Always pass a diagnostic handler to the linker.
Before this patch the diagnostic handler was optional. If it was not
passed, the one in the LLVMContext was used.

That is probably not a pattern we want to follow. If each area has an
optional callback, there is a sea of callbacks and it is hard to follow
which one is called.

Doing this also found cases where the callback is a nice addition, like
testing that no errors or warnings are reported.

The other option is to always use the diagnostic handler in the
LLVMContext. That has a few problems

* To implement the C API we would have to set the diag handler and then
  set it back to the original value.
* Code that creates the context might be far away from code that wants
  the diagnostics.

I do have a patch that implements the second option and will send that as
an RFC.

llvm-svn: 254777
2015-12-04 22:08:53 +00:00
Rafael Espindola 7b8a24e5bb Move a call to getGlobalContext out of lib/LTO.
llvm-svn: 254696
2015-12-04 02:42:28 +00:00
Rafael Espindola 0e309fe860 Use references now that it is natural to do so.
The linker never takes ownership of a module or changes which module it
is refering to, making it natural to use references.

llvm-svn: 254449
2015-12-01 19:50:54 +00:00
Rafael Espindola 4808c6d064 Delete the setModule method from the Linker.
It was only used from LTO for a debug feature, and LTO can just create
another linker.

It is pretty odd to have a method to reset the module in the middle of a
link. It would make IdentifiedStructTypes inconsistent with the Module
for example.

llvm-svn: 254434
2015-12-01 18:41:30 +00:00
Tobias Edler von Koch 4d45090659 [LTO] Add option to emit assembly from LTOCodeGenerator
This adds a new API, LTOCodeGenerator::setFileType, to choose the output file
format for LTO CodeGen. A corresponding change to use this new API from
llvm-lto and a test case is coming in a separate commit.

Differential Revision: http://reviews.llvm.org/D14554

llvm-svn: 253622
2015-11-19 23:59:24 +00:00
Yunzhong Gao 8e348cc732 Switch lto codegen to using diagnostic handlers.
This patch removes the std::string& argument from a number of C++ LTO API calls
and instead makes them use the installed diagnostic handler. This would also
improve consistency of diagnostic handling infrastructure: if an LTO client used
lto_codegen_set_diagnostic_handler() to install a custom error handler, we do
not want some error messages to go through the custom error handler, and some
other error messages to go into sLastErrorString.

llvm-svn: 253367
2015-11-17 19:48:12 +00:00
Yunzhong Gao ea7b3a2320 Add a libLTO diagnostic handler that supports lto_get_error_message API
This is a follow-up from the previous discussion on the thread:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151019/307763.html

The LibLTO lto_get_error_message() API reads error messages from a std::string
sLastErrorString. Instead of passing this string around as an argument, this
patch creates a diagnostic handler and then sends this handler to the
constructor of LTOCodeGenerator.

Differential Revision: http://reviews.llvm.org/D14313

llvm-svn: 252791
2015-11-11 19:59:08 +00:00
Duncan P. N. Exon Smith cff5feff6f Reapply "LTO: Disable extra verify runs in release builds"
This reverts commit r247730, effectively reapplying r247729.  This time
I have an lld commit ready to follow.

llvm-svn: 247735
2015-09-15 23:05:59 +00:00
Duncan P. N. Exon Smith 7de73e56a4 Revert "LTO: Disable extra verify runs in release builds"
This temporarily reverts commit r247729, as it caused lld build
failures.  I'll recommit once I have an lld patch ready-to-go.

llvm-svn: 247730
2015-09-15 22:47:38 +00:00
Duncan P. N. Exon Smith 236787838c LTO: Disable extra verify runs in release builds
The verifier currently runs three times in LTO: (1) after parsing, (2)
at the beginning of the optimization pipeline, and (3) at the end of it.

The first run is important, since we're not sure where the bitcode comes
from and it's nice to validate it, but in release builds the extra runs
aren't appropriate.

This commit:
  - Allows these runs to be disabled in LTOCodeGenerator.
  - Adds command-line options to llvm-lto.
  - Adds command-line options to libLTO.dylib, and disables the verifier
    by default in release builds (based on NDEBUG).

This shaves about 3.5% off the runtime of ld64 when linking
verify-uselistorder with -flto -g.

rdar://22509081

llvm-svn: 247729
2015-09-15 22:26:11 +00:00
Chandler Carruth 29a18a4663 [PM] Port SROA to the new pass manager.
In some ways this is a very boring port to the new pass manager as there
are no interesting analyses or dependencies or other oddities.

However, this does introduce the first good example of a transformation
pass with non-trivial state porting to the new pass manager. I've tried
to carve out patterns here to replicate elsewhere, and would appreciate
comments on whether folks like these patterns:

- A common need in the new pass manager is to effectively lift the pass
  class and some of its state into a public header file. Prior to this,
  LLVM used anonymous namespaces to provide "module private" types and
  utilities, but that doesn't scale to cases where a public header file
  is needed and the new pass manager will exacerbate that. The pattern
  I've adopted here is to use the namespace-cased-name of the core pass
  (what would be a module if we had them) as a module-private namespace.
  Then utility and other code can be declared and defined in this
  namespace. At some point in the future, we could even have
  (conditionally compiled) code that used modules features when
  available to do the same basic thing.

- I've split the actual pass run method in two in order to expose
  a private method usable by the old pass manager to wrap the new class
  with a minimum of duplicated code. I actually looked at a bunch of
  ways to automate or generate these, but they are all quite terrible
  IMO. The fundamental need is to extract the set of analyses which need
  to cross this interface boundary, and that will end up being too
  unpredictable to effectively encapsulate IMO. This is also
  a relatively small amount of boiler plate that will live a relatively
  short time, so I'm not too worried about the fact that it is boiler
  plate.

The rest of the patch is totally boring but results in a massive diff
(sorry). It just moves code around and removes or adds qualifiers to
reflect the new name and nesting structure.

Differential Revision: http://reviews.llvm.org/D12773

llvm-svn: 247501
2015-09-12 09:09:14 +00:00
Yunzhong Gao 46261a74db Add a non-exiting diagnostic handler for LTO.
This is in order to give LTO clients a chance to do some clean-up before
terminating the process.

llvm-svn: 247461
2015-09-11 20:01:53 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Yaron Keren 55f5c3d43b Fix typo.
llvm-svn: 246538
2015-09-01 10:13:49 +00:00
Duncan P. N. Exon Smith f4967754a5 LTO: Cleanup parameter names and header docs, NFC
Follow LLVM style for the parameter names (`CamelCase` not `camelCase`),
and surface the header docs in doxygen.  No functionality change
intended.

llvm-svn: 246509
2015-08-31 23:44:06 +00:00
Peter Collingbourne c269ed5115 CodeGen: Introduce splitCodeGen and teach LTOCodeGenerator to use it.
llvm::splitCodeGen is a function that implements the core of parallel LTO
code generation. It uses llvm::SplitModule to split the module into linkable
partitions and spawning one code generation thread per partition. The function
produces multiple object files which can be linked in the usual way.

This has been threaded through to LTOCodeGenerator (and llvm-lto for testing
purposes). Separate patches will add parallel LTO support to the gold plugin
and lld.

Differential Revision: http://reviews.llvm.org/D12260

llvm-svn: 246236
2015-08-27 23:37:36 +00:00
Peter Collingbourne 9c8909dbd1 LTO: Simplify merged module ownership.
This change moves LTOCodeGenerator's ownership of the merged module to a
field of type std::unique_ptr<Module>. This helps simplify parts of the code
and clears the way for the module to be consumed by LLVM CodeGen (see D12132
review comments).

Differential Revision: http://reviews.llvm.org/D12205

llvm-svn: 245891
2015-08-24 22:22:53 +00:00
Peter Collingbourne e34034c8d0 LTO: Rename mergedModule variables to MergedModule to prepare for ownership change.
Also convert a few loops to range-for loops and correct a comment.

llvm-svn: 245874
2015-08-24 21:15:35 +00:00
Peter Collingbourne c7b675f48c LTO: Maintain target triple, FeatureStr and CGOptLevel in the module or LTOCodeGenerator.
This makes it easier to create new TargetMachines on demand.

llvm-svn: 245781
2015-08-22 02:25:53 +00:00
Peter Collingbourne 44ee84eec5 LTO: Change signature of LTOCodeGenerator::setCodePICModel() to take a Reloc::Model.
This allows us to remove a bunch of code in LTOCodeGenerator and llvm-lto
and has the side effect of improving error handling in the libLTO C API.

llvm-svn: 245756
2015-08-21 22:57:17 +00:00
Peter Collingbourne ec43d0f356 LTO: Simplify ownership of LTOCodeGenerator::TargetMach.
llvm-svn: 245671
2015-08-21 04:45:57 +00:00
Peter Collingbourne 2257512f87 LTO: Simplify ownership of LTOCodeGenerator::CodegenOptions.
llvm-svn: 245670
2015-08-21 04:45:55 +00:00
Mehdi Amini 26d481311a Remove access to the DataLayout in the TargetMachine
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.

This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11103

(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
2015-07-24 16:04:22 +00:00
Mehdi Amini 5d8e569926 Revert "Remove access to the DataLayout in the TargetMachine"
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.

It breaks clang too badly, I need to prepare a proper patch for clang
first.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
2015-07-24 03:36:55 +00:00
Mehdi Amini b4bc424c9a Remove access to the DataLayout in the TargetMachine
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.

This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11103

(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
2015-07-24 01:44:39 +00:00
Rafael Espindola c233f74e6e Simplify the Mangler interface now that DataLayout is mandatory.
We only need to pass in a DataLayout when mangling a raw string, not when
constructing the mangler.

llvm-svn: 240405
2015-06-23 13:59:29 +00:00
Peter Collingbourne 3cc69d90f0 Make the C++ LTO API easier to use from C++ clients.
Start using C++ types such as StringRef and MemoryBuffer in the C++ LTO
API. In doing so, clarify the ownership of the native object file: the caller
now owns it, not the LTOCodeGenerator. The C libLTO library has been modified
to use a derived class of LTOCodeGenerator that owns the object file.

Differential Revision: http://reviews.llvm.org/D10114

llvm-svn: 238776
2015-06-01 20:08:30 +00:00
Duncan P. N. Exon Smith 5a490d0026 LTO: Add API to choose whether to embed uselists
Reverse libLTO's default behaviour for preserving use-list order in
bitcode, and add API for controlling it.  The default setting is now
`false` (don't preserve them), which is consistent with `clang`'s
default behaviour.

Users of libLTO should call `lto_codegen_should_embed_uselists(CG,true)`
prior to calling `lto_codegen_write_merged_modules()` whenever the
output file isn't part of the production workflow in order to reproduce
results with subsequent calls to `llc`.

(I haven't added tests since `llvm-lto` (the test tool for LTO) doesn't
support bitcode output, and even if it did: there isn't actually a good
way to test whether a tool has passed the flag.  If the order is already
"natural" (if the order will already round-trip) then no use-list
directives are emitted at all.  At some point I'll circle back to add
tests to `llvm-as` (etc.) that they actually respect the flag, at which
point I can somehow add a test here as well.)

llvm-svn: 235943
2015-04-27 23:38:54 +00:00
Duncan P. N. Exon Smith 7832e0a2f0 LTO: Simplify code generator initialization
Simplify `LTOCodeGenerator` initialization by initializing simple fields
at their definition.

llvm-svn: 235939
2015-04-27 23:19:26 +00:00
Manman Ren ce0a066524 [LTO API] add lto_codegen_set_should_internalize.
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file.
The saved bitcode file is already internalized, so we can call
lto_codegen_set_should_internalize and skip running internalization again.

rdar://20227235

llvm-svn: 235211
2015-04-17 17:10:09 +00:00
Duncan P. N. Exon Smith 8a7b84b4d0 uselistorder: Remove the global bits
Remove all the global bits to do with preserving use-list order by
moving the `cl::opt`s to the individual tools that want them.  There's a
minor functionality change to `libLTO`, in that you can't send in
`-preserve-bc-uselistorder=false`, but making that bit settable (if it's
worth doing) should be through explicit LTO API.

As a drive-by fix, I removed some includes of `UseListOrder.h` that were
made unnecessary by recent commits.

llvm-svn: 234973
2015-04-15 03:14:06 +00:00
Duncan P. N. Exon Smith a052ed6381 uselistorder: Pull the bit through WriteToBitcodFile()
Change the callers of `WriteToBitcodeFile()` to pass `true` or
`shouldPreserveBitcodeUseListOrder()` explicitly.  I left the callers
that want to send `false` alone.

I'll keep pushing the bit higher until hopefully I can delete the global
`cl::opt` entirely.

llvm-svn: 234957
2015-04-15 00:10:50 +00:00
Rafael Espindola 5560a4cfbd Use raw_pwrite_stream in the object writer/streamer.
The ELF object writer will take advantage of that in the next commit.

llvm-svn: 234950
2015-04-14 22:14:34 +00:00
Duncan P. N. Exon Smith c55dee1c2f IR: Set -preserve-bc-uselistorder=false by default
But keep it on by default in `llvm-as`, `opt`, `bugpoint`, `llvm-link`,
`llvm-extract`, and `LTOCodeGenerator`.  Part of PR5680.

llvm-svn: 234921
2015-04-14 18:33:00 +00:00
Rafael Espindola 5682ce2ceb Simplify use of formatted_raw_ostream.
formatted_raw_ostream is a wrapper over another stream to add column and line
number tracking.

It is used only for asm printing.

This patch moves the its creation down to where we know we are printing
assembly. This has the following advantages:

* Simpler lifetime management: std::unique_ptr
* We don't compute column and line number of object files :-)

llvm-svn: 234535
2015-04-09 21:06:08 +00:00
Rafael Espindola ee0dd4d289 This reverts commit r234460 and r234461.
Revert "Add classof implementations to the raw_ostream classes."
Revert "Use the cast machinery to remove dummy uses of formatted_raw_ostream."

The underlying issue can be fixed without classof.

llvm-svn: 234495
2015-04-09 15:54:59 +00:00
Rafael Espindola 132381f981 Use the cast machinery to remove dummy uses of formatted_raw_ostream.
If we know we are producing an object, we don't need to wrap the stream
in a formatted_raw_ostream anymore.

llvm-svn: 234461
2015-04-09 02:28:12 +00:00
Manman Ren ed6b5fc4b0 [LTO] do not run internalize pass from compileOptimized.
The input to compileOptimized is already optimized and internalized, so remove
internalize pass from compileOptimized.

rdar://20227235

llvm-svn: 234446
2015-04-08 22:02:11 +00:00
Duncan P. N. Exon Smith ab58a568ee Verifier: Remove the separate -verify-di pass
Remove `DebugInfoVerifierLegacyPass` and the `-verify-di` pass.
Instead, call into the `DebugInfoVerifier` from inside
`VerifierLegacyPass::finalizeModule()`.  This better matches the logic
in `verifyModule()` (used by the new PassManager), avoids requiring two
separate passes to verify the IR, and makes the API for "add a pass to
verify the IR" simple.

Note: the `-verify-debug-info` flag still works (for now, at least;
eventually it might make sense to just remove it).

llvm-svn: 232772
2015-03-19 22:24:17 +00:00
Peter Collingbourne 070843d60b libLTO, llvm-lto, gold: Introduce flag for controlling optimization level.
This change also introduces a link-time optimization level of 1. This
optimization level runs only the globaldce pass as well as cleanup passes for
passes that run at -O0, specifically simplifycfg which cleans up lowerbitsets.

http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150316/266951.html

llvm-svn: 232769
2015-03-19 22:01:00 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
Manman Ren 082a336a89 [LTO API] fix memory leakage introduced at r230290.
r230290 released the LLVM module but not the LTOModule.

rdar://19024554

llvm-svn: 230544
2015-02-25 21:20:53 +00:00
Manman Ren 6487ce955a [LTO API] add lto_codegen_set_module to set the destination module.
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file to
speed up debugging code generation passes and ld64 stuff after code generation.

llvm linking a single bitcode file via lto_codegen_add_module will generate a
different bitcode file from the single input. With the newly-added
lto_codegen_set_module, we can make sure the destination module is the same as
the input.

lto_codegen_set_module will transfer the ownship of the module to code
generator.

rdar://19024554

llvm-svn: 230290
2015-02-24 00:45:56 +00:00
Chandler Carruth 30d69c2e36 [PM] Remove the old 'PassManager.h' header file at the top level of
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.

This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.

The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".

llvm-svn: 229094
2015-02-13 10:01:29 +00:00
Manman Ren 8121e1db91 [LTO API] split lto_codegen_compile to lto_codegen_optimize and
lto_codegen_compile_optimized. Also add lto_api_version.

Before this commit, we can only dump the optimized bitcode after running
lto_codegen_compile, but it includes some impacts of running codegen passes,
one example is StackProtector pass. We will get assertion failure when running
llc on the optimized bitcode, because StackProtector is effectively run twice.

After splitting lto_codegen_compile, the linker can choose to dump the bitcode
before running lto_codegen_compile_optimized.

lto_api_version is added so ld64 can check for runtime-availability of the new
API.

rdar://19565500

llvm-svn: 228000
2015-02-03 18:39:15 +00:00
Chandler Carruth 5ec2b1d11a [multiversion] Implement the old pass manager's TTI wrapper pass in
terms of the new pass manager's TargetIRAnalysis.

Yep, this is one of the nicer bits of the new pass manager's design.
Passes can in many cases operate in a vacuum and so we can just nest
things when convenient. This is particularly convenient here as I can
now consolidate all of the TargetMachine logic on this analysis.

The most important change here is that this pushes the function we need
TTI for all the way into the TargetMachine, and re-creates the TTI
object for each function rather than re-using it for each function.
We're now prepared to teach the targets to produce function-specific TTI
objects with specific subtargets cached, etc.

One piece of feedback I'd love here is whether its worth renaming any of
this stuff. None of the names really seem that awesome to me at this
point, but TargetTransformInfoWrapperPass is particularly ... odd.
TargetIRAnalysisWrapper might make more sense. I would want to do that
rename separately anyways, but let me know what you think.

llvm-svn: 227731
2015-02-01 12:26:09 +00:00
Chandler Carruth 93dcdc47db [PM] Switch the TargetMachine interface from accepting a pass manager
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.

This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.

I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.

With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.

llvm-svn: 227685
2015-01-31 11:17:59 +00:00
Chandler Carruth 1efa12d6d8 [PM] Sink the population of the pass manager with target-specific
analyses back into the LTO code generator.

The pass manager builder (and the transforms library in general)
shouldn't be referencing the target machine at all.

This makes the LTO population work like the others -- the data layout
and target transform info need to be pre-populated.

llvm-svn: 227576
2015-01-30 13:33:42 +00:00
Akira Hatanaka 8fba18e958 [LTO] Scan all per-function subtargets when collecting runtime library names.
accumulateAndSortLibcalls in LTOCodeGenerator.cpp collects names of runtime
library functions which are used to identify user-defined functions that should
be protected. Previously, this function would only scan the TargetLowering
object belonging to the "main" subtarget for the library function names. This
commit changes it to scan all per-function subtargets.

Differential Revision: http://reviews.llvm.org/D7275

llvm-svn: 227533
2015-01-30 01:16:24 +00:00
Eric Christopher 8b7706517c Move DataLayout back to the TargetMachine from TargetSubtargetInfo
derived classes.

Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.

*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.

llvm-svn: 227113
2015-01-26 19:03:15 +00:00
Chandler Carruth c0291865ed [PM] Rework how the TargetLibraryInfo pass integrates with the new pass
manager to support the actual uses of it. =]

When I ported instcombine to the new pass manager I discover that it
didn't work because TLI wasn't available in the right places. This is
a somewhat surprising and/or subtle aspect of the new pass manager
design that came up before but I think is useful to be reminded of:

While the new pass manager *allows* a function pass to query a module
analysis, it requires that the module analysis is already run and cached
prior to the function pass manager starting up, possibly with
a 'require<foo>' style utility in the pass pipeline. This is an
intentional hurdle because using a module analysis from a function pass
*requires* that the module analysis is run prior to entering the
function pass manager. Otherwise the other functions in the module could
be in who-knows-what state, etc.

A somewhat surprising consequence of this design decision (at least to
me) is that you have to design a function pass that leverages
a module analysis to do so as an optional feature. Even if that means
your function pass does no work in the absence of the module analysis,
you have to handle that possibility and remain conservatively correct.
This is a natural consequence of things being able to invalidate the
module analysis and us being unable to re-run it. And it's a generally
good thing because it lets us reorder passes arbitrarily without
breaking correctness, etc.

This ends up causing problems in one case. What if we have a module
analysis that is *definitionally* impossible to invalidate. In the
places this might come up, the analysis is usually also definitionally
trivial to run even while other transformation passes run on the module,
regardless of the state of anything. And so, it follows that it is
natural to have a hard requirement on such analyses from a function
pass.

It turns out, that TargetLibraryInfo is just such an analysis, and
InstCombine has a hard requirement on it.

The approach I've taken here is to produce an analysis that models this
flexibility by making it both a module and a function analysis. This
exposes the fact that it is in fact safe to compute at any point. We can
even make it a valid CGSCC analysis at some point if that is useful.
However, we don't want to have a copy of the actual target library info
state for each function! This state is specific to the triple. The
somewhat direct and blunt approach here is to turn TLI into a pimpl,
with the state and mutators in the implementation class and the query
routines primarily in the wrapper. Then the analysis can lazily
construct and cache the implementations, keyed on the triple, and
on-demand produce wrappers of them for each function.

One minor annoyance is that we will end up with a wrapper for each
function in the module. While this is a bit wasteful (one pointer per
function) it seems tolerable. And it has the advantage of ensuring that
we pay the absolute minimum synchronization cost to access this
information should we end up with a nice parallel function pass manager
in the future. We could look into trying to mark when analysis results
are especially cheap to recompute and more eagerly GC-ing the cached
results, or we could look at supporting a variant of analyses whose
results are specifically *not* cached and expected to just be used and
discarded by the consumer. Either way, these seem like incremental
enhancements that should happen when we start profiling the memory and
CPU usage of the new pass manager and not before.

The other minor annoyance is that if we end up using the TLI in both
a module pass and a function pass, those will be produced by two
separate analyses, and thus will point to separate copies of the
implementation state. While a minor issue, I dislike this and would like
to find a way to cleanly allow a single analysis instance to be used
across multiple IR unit managers. But I don't have a good solution to
this today, and I don't want to hold up all of the work waiting to come
up with one. This too seems like a reasonable thing to incrementally
improve later.

llvm-svn: 226981
2015-01-24 02:06:09 +00:00
Chandler Carruth 1edb9d63e9 [PM] Separate the InstCombiner from its pass.
This creates a small internal pass which runs the InstCombiner over
a function. This is the hard part of porting InstCombine to the new pass
manager, as at this point none of the code in InstCombine has access to
a Pass object any longer.

The resulting interface for the InstCombiner is pretty terrible. I'm not
planning on leaving it that way. The key thing missing is that we need
to separate the worklist from the combiner a touch more. Once that's
done, it should be possible for *any* part of LLVM to just create
a worklist with instructions, populate it, and then combine it until
empty. The pass will just be the (obvious and important) special case of
doing that for an entire function body.

For now, this is the first increment of factoring to make all of this
work.

llvm-svn: 226618
2015-01-20 22:44:35 +00:00
Chandler Carruth 62d4215baa [PM] Move TargetLibraryInfo into the Analysis library.
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.

This is in preparation for porting this analysis to the new pass
manager.

No functionality changed, and updates inbound for Clang and Polly.

llvm-svn: 226078
2015-01-15 02:16:27 +00:00
Duncan P. N. Exon Smith 9419863909 libLTO: Assert if LTOCodeGenerator and LTOModule are from different contexts
llvm-svn: 221730
2014-11-11 23:13:10 +00:00
Duncan P. N. Exon Smith de5e32b5b4 libLTO: Allow LTOCodeGenerator to own a context
llvm-svn: 221726
2014-11-11 23:03:29 +00:00
Arnold Schwaighofer eb1a38fa73 Add an option to the LTO code generator to disable vectorization during LTO
We used to always vectorize (slp and loop vectorize) in the LTO pass pipeline.

r220345 changed it so that we used the PassManager's fields 'LoopVectorize' and
'SLPVectorize' out of the desire to be able to disable vectorization using the
cl::opt flags 'vectorize-loops'/'slp-vectorize' which the before mentioned
fields default to.
Unfortunately, this turns off vectorization because those fields
default to false.
This commit adds flags to the LTO library to disable lto vectorization which
reconciles the desire to optionally disable vectorization during LTO and
the desired behavior of defaulting to enabled vectorization.

We really want tools to set PassManager flags directly to enable/disable
vectorization and not go the route via cl::opt flags *in*
PassManagerBuilder.cpp.

llvm-svn: 220652
2014-10-26 21:50:58 +00:00
Rafael Espindola d12b4a334b Update the error handling of lib/Linker.
Instead of passing a std::string&, use the new diagnostic infrastructure.

llvm-svn: 220608
2014-10-25 04:06:10 +00:00
Duncan P. N. Exon Smith f02fe70805 LTO: Document the Boolean argument from r218784
llvm-svn: 218907
2014-10-02 21:11:04 +00:00
Duncan P. N. Exon Smith 30c9242caa LTO: Ignore disabled diagnostic remarks
r206400 and r209442 added remarks that are disabled by default.
However, if a diagnostic handler is registered, the remarks are sent
unfiltered to the handler.  This is the right behaviour for clang, since
it has its own filters.

However, the diagnostic handler exposed in the LTO API receives only the
severity and message.  It doesn't have the information to filter by pass
name.  For LTO, disabled remarks should be filtered by the producer.

I've changed `LLVMContext::setDiagnosticHandler()` to take a `bool`
argument indicating whether to respect the built-in filters.  This
defaults to `false`, so other consumers don't have a behaviour change,
but `LTOCodeGenerator::setDiagnosticHandler()` sets it to `true`.

To make this behaviour testable, I added a `-use-diagnostic-handler`
command-line option to `llvm-lto`.

This fixes PR21108.

llvm-svn: 218784
2014-10-01 18:36:03 +00:00
Rafael Espindola c435adcde0 Add doInitialization/doFinalization to DataLayoutPass.
With this a DataLayoutPass can be reused for multiple modules.

Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.

Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.

llvm-svn: 217548
2014-09-10 21:27:43 +00:00
David Blaikie 78fdec5898 unique_ptrify LTOCodeGenerator::NativeObjectFile
llvm-svn: 216927
2014-09-02 18:21:06 +00:00
Craig Topper 3af9722529 Fix some cases were ArrayRefs were being passed by reference. Also remove 'const' from some other ArrayRef uses since its implicitly const already.
llvm-svn: 216524
2014-08-27 05:25:00 +00:00
Rafael Espindola 3fd1e9933f Modernize raw_fd_ostream's constructor a bit.
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.

A create static method would be even better, but this patch is already a bit too
big.

llvm-svn: 216393
2014-08-25 18:16:47 +00:00
Rafael Espindola 7cebf36a95 Move some logic to populateLTOPassManager.
This will avoid code duplication in the next commit which calls it directly
from the gold plugin.

llvm-svn: 216211
2014-08-21 20:03:44 +00:00
Rafael Espindola 216e0c0617 Respect LibraryInfo in populateLTOPassManager and use it. NFC.
llvm-svn: 216203
2014-08-21 18:49:52 +00:00
Rafael Espindola e07caad9e7 Handle inlining in populateLTOPassManager like in populateModulePassManager.
No functionality change.

llvm-svn: 216178
2014-08-21 13:35:30 +00:00
Rafael Espindola 208bc533cd Move DisableGVNLoadPRE from populateLTOPassManager to PassManagerBuilder.
llvm-svn: 216174
2014-08-21 13:13:17 +00:00
Craig Topper 71b7b68b74 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 216158
2014-08-21 05:55:13 +00:00
Craig Topper 6230691c91 Revert "Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size."
Getting a weird buildbot failure that I need to investigate.

llvm-svn: 215870
2014-08-18 00:24:38 +00:00
Craig Topper 5229cfd163 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 215868
2014-08-17 23:47:00 +00:00
Rafael Espindola f9e52cf015 Don't internalize all but main by default.
This is mostly a cleanup, but it changes a fairly old behavior.

Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.

Now to get a usable behavior out of opt one doesn't need the funny
looking command line:

opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts

llvm-svn: 214919
2014-08-05 20:10:38 +00:00
Eric Christopher d913448b38 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Tim Northover e19bed7d33 AArch64: remove arm64 triple enumerator.
Having both Triple::arm64 and Triple::aarch64 is extremely confusing, and
invites bugs where only one is checked. In reality, the only legitimate
difference between the two (arm64 usually means iOS) is also present in the OS
part of the triple and that's what should be checked.

We still parse the "arm64" triple, just canonicalise it to Triple::aarch64, so
there aren't any LLVM-side test changes.

llvm-svn: 213743
2014-07-23 12:32:47 +00:00
Gerolf Hoflehner f27ae6cdcf MergedLoadStoreMotion pass
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.

llvm-svn: 213396
2014-07-18 19:13:09 +00:00
Rafael Espindola adf21f2a56 Update the MemoryBuffer API to use ErrorOr.
llvm-svn: 212405
2014-07-06 17:43:13 +00:00
Rafael Espindola dddd1fd9f4 Implement LTOModule on top of IRObjectFile.
IRObjectFile provides all the logic for producing mangled names and getting
symbols from inline assembly.

LTOModule then adds logic for linking specific tasks, like constructing
llvm.compiler_user or extracting linker options from the bitcode.

The rule of the thumb is that IRObjectFile has the functionality that is
needed by both LTO and llvm-ar.

llvm-svn: 212349
2014-07-04 18:40:36 +00:00
Alp Toker e69170a110 Revert "Introduce a string_ostream string builder facilty"
Temporarily back out commits r211749, r211752 and r211754.

llvm-svn: 211814
2014-06-26 22:52:05 +00:00
Alp Toker 614717388c Introduce a string_ostream string builder facilty
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.

small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.

This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.

The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.

llvm-svn: 211749
2014-06-26 00:00:48 +00:00
Rafael Espindola 70d3c20b0f Use the assignment operator.
No functionality change.

llvm-svn: 211319
2014-06-19 22:27:46 +00:00
Rafael Espindola a064b0c476 Set missing options in LTOCodeGenerator::setTargetOptions.
Patch by Tom Roeder, I just added the test.

llvm-svn: 211317
2014-06-19 22:14:12 +00:00
Rafael Espindola db4ed0bdab Remove 'using std::errro_code' from lib.
llvm-svn: 210871
2014-06-13 02:24:39 +00:00
Rafael Espindola 3acea39853 Don't use 'using std::error_code' in include/llvm.
This should make sure that most new uses use the std prefix.

llvm-svn: 210835
2014-06-12 21:46:39 +00:00
Rafael Espindola a6e9c3e43a Remove system_error.h.
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.

llvm-svn: 210803
2014-06-12 17:38:55 +00:00
Alp Toker 17dd8efe9e Build fix: remove initializeJumpInstrTablesPass() call from LTO
This was incurring an unsatisfied dependency on CodeGen from LTO breaking
shared builds:

Undefined symbols for architecture x86_64:
  "llvm::initializeJumpInstrTablesPass(llvm::PassRegistry&)", referenced from:
      llvm::LTOCodeGenerator::initializeLTOPasses() in LTOCodeGenerator.cpp.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

Removed as a temporary measure pending feedback from the author.

llvm-svn: 210400
2014-06-07 20:39:53 +00:00
Tom Roeder 44cb65fff1 Add a new attribute called 'jumptable' that creates jump-instruction tables for functions marked with this attribute.
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.

This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.

llvm-svn: 210280
2014-06-05 19:29:43 +00:00
Tim Northover 3b0846e8f7 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

llvm-svn: 209577
2014-05-24 12:50:23 +00:00
Rafael Espindola 9c8c96f08a Use a range loop.
llvm-svn: 207996
2014-05-05 20:06:41 +00:00
Rafael Espindola 80df4bb10f Rename member variable to try to fix the bots.
llvm-svn: 207915
2014-05-03 15:28:13 +00:00
Tom Roeder fd1bc602b3 Add an -mattr option to the gold plugin to support subtarget features in LTO
This adds support for an -mattr option to the gold plugin and to llvm-lto. This
allows the caller to specify details of the subtarget architecture, like +aes,
or +ssse3 on x86.  Note that this requires a change to the include/llvm-c/lto.h
interface: it adds a function lto_codegen_set_attr and it increments the
version of the interface.

llvm-svn: 207279
2014-04-25 21:46:51 +00:00
Duncan P. N. Exon Smith 6ef5f284d6 verify-di: Implement DebugInfoVerifier
Implement DebugInfoVerifier, which steals verification relying on
DebugInfoFinder from Verifier.

  - Adds LegacyDebugInfoVerifierPassPass, a ModulePass which wraps
    DebugInfoVerifier.  Uses -verify-di command-line flag.

  - Change verifyModule() to invoke DebugInfoVerifier as well as
    Verifier.

  - Add a call to createDebugInfoVerifierPass() wherever there was a
    call to createVerifierPass().

This implementation as a module pass should sidestep efficiency issues,
allowing us to turn debug info verification back on.

<rdar://problem/15500563>

llvm-svn: 206300
2014-04-15 16:27:38 +00:00
Craig Topper 2617dccea2 [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
llvm-svn: 206252
2014-04-15 06:32:26 +00:00
James Molloy 951e529f66 Teach llvm-lto to respect the given RelocModel.
Patch by Nick Tomlinson!

llvm-svn: 206177
2014-04-14 13:54:16 +00:00
Reid Kleckner 9c6582129a Move the segmented stack switch to a function attribute
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.

Patch by Luqman Aden and Alex Crichton!

llvm-svn: 205997
2014-04-10 22:58:43 +00:00
Duncan P. N. Exon Smith 4680f40d28 Revert "Reapply "LTO: add API to set strategy for -internalize""
This reverts commit r199244.

Conflicts:
	include/llvm-c/lto.h
	include/llvm/LTO/LTOCodeGenerator.h
	lib/LTO/LTOCodeGenerator.cpp

llvm-svn: 205471
2014-04-02 22:05:57 +00:00
Tim Northover 00ed9964c6 ARM64: initial backend import
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.

Everything will be easier with the target in-tree though, hence this
commit.

llvm-svn: 205090
2014-03-29 10:18:08 +00:00
Ahmed Charles 56440fd820 Replace OwningPtr<T> with std::unique_ptr<T>.
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.

llvm-svn: 203083
2014-03-06 05:51:42 +00:00
Chandler Carruth 6cc07df4ec [Layering] Sink Linker.h into a Linker subdirectory to make it
consistent with every other sub-library header in LLVM.

llvm-svn: 203065
2014-03-06 03:42:23 +00:00
Ahmed Charles 96c9d95f51 [C++11] Replace OwningPtr::take() with OwningPtr::release().
llvm-svn: 202957
2014-03-05 10:19:29 +00:00
Chandler Carruth 442f784814 [cleanup] Re-sort all the includes with utils/sort_includes.py.
llvm-svn: 202811
2014-03-04 10:07:28 +00:00
Tobias Grosser e8d4c9a2c7 Add 'remark' diagnostic type in LLVM
A 'remark' is information that is not an error or a warning, but rather some
additional information provided to the user. In contrast to a 'note' a 'remark'
is an independent diagnostic, whereas a 'note' always depends on another
diagnostic.

A typical use case for remark nodes is information provided to the user, e.g.
information provided by the vectorizer about loops that have been vectorized.

llvm-svn: 202474
2014-02-28 09:08:45 +00:00
Rafael Espindola 339430f993 Use DataLayout from the module when easily available.
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.

One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.

Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.

llvm-svn: 202204
2014-02-25 23:25:17 +00:00
Rafael Espindola 935125126c Make DataLayout a plain object, not a pass.
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.

llvm-svn: 202168
2014-02-25 17:30:31 +00:00
Rafael Espindola 90c7f1cc16 Replace the F_Binary flag with a F_Text one.
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)

llvm-svn: 202052
2014-02-24 18:20:12 +00:00
Rafael Espindola a3ad4e693c move getNameWithPrefix and getSymbol to TargetMachine.
TargetLoweringBase is implemented in CodeGen, so before this patch we had
a dependency fom Target to CodeGen. This would show up as a link failure of
llvm-stress when building with -DBUILD_SHARED_LIBS=ON.

This fixes pr18900.

llvm-svn: 201711
2014-02-19 20:30:41 +00:00
Rafael Espindola daeafb4c2a Add back r201608, r201622, r201624 and r201625
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.

They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.

llvm-svn: 201700
2014-02-19 17:23:20 +00:00
Daniel Jasper 7e198ad862 Revert r201622 and r201608.
This causes the LLVMgold plugin to segfault. More information on the
replies to r201608.

llvm-svn: 201669
2014-02-19 12:26:01 +00:00
Rafael Espindola 09dcc6a536 Fix PR18743.
The IR
@foo = private constant i32 42

is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.

One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.

What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.

One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).

llvm-svn: 201608
2014-02-18 22:24:57 +00:00
Juergen Ributzka 5fe955cb75 Add target analysis passes to the codegen pipeline for MCJIT.
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.

Reviewed by Andrew Kaylor

llvm-svn: 199926
2014-01-23 19:23:28 +00:00
Quentin Colombet 5fa1f6f57a [LTO] Add a hook to map LLVM diagnostics into the clients of LTO.
Add a hook in the C API of LTO so that clients of the code generator can set
their own handler for the LLVM diagnostics.
The handler is defined like this:
typedef void (*lto_diagnostic_handler_t)(lto_codegen_diagnostic_severity_t
severity, const char *diag, void *ctxt)
- severity says how bad this is.
- diag is a string that contains the diagnostic message.
- ctxt is the registered context for this handler.

This hook is more general than the lto_get_error_message, since this function
keeps only the latest message and can only be queried when something went wrong
(no warning for instance).

<rdar://problem/15517596>

llvm-svn: 199338
2014-01-15 22:04:35 +00:00
Duncan P. N. Exon Smith 93be7c4fb3 Reapply "LTO: add API to set strategy for -internalize"
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll.  The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")).  This commit
fixes the bug.

The original commit message follows.

Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

llvm-svn: 199244
2014-01-14 18:52:17 +00:00
NAKAMURA Takumi 23c0ab53b2 Revert r199191, "LTO: add API to set strategy for -internalize"
Please update also Other/link-opts.ll, in next time.

llvm-svn: 199197
2014-01-14 09:40:18 +00:00
Duncan P. N. Exon Smith 43ea3478bf LTO: add API to set strategy for -internalize
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

llvm-svn: 199191
2014-01-14 06:37:26 +00:00