This canonicalizer replaces reshapes of constant tensors that contain the updated shape (skipping the reshape operation).
Differential Revision: https://reviews.llvm.org/D112038
Average pool assumed the same input/output type. Result type for integers
is always an i32, should be updated appropriately.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D111590
Should have verified the perm length and input rank were the same before
inferring shape. Caused a crash with invalid IR.
Differential Revision: https://reviews.llvm.org/D110674
For such cases, the type of the constant DenseElementsAttr is
different from the transpose op return type.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D110446
* If the input is a constant splat value, we just
need to reshape it.
* If the input is a general constant with one user,
we can also constant fold it, without bloating
the IR.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D110439
TosaOp defintion had an artificial constraint that the input/output types
needed to be ranked to invoke the quantization builder. This is correct as an
unranked tensor could still be quantized.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D109863
Tosa.while shape inference requires repeatedly running shape inference across
the body of the loop until the types become static as we do not know the number
of iterations required by the loop body. Once the least specific arguments are
known they are propagated to both regions.
To determine the final end type, the least restrictive types are determined
from all yields.
Differential Revision: https://reviews.llvm.org/D108801
Some folding cases are trivial to fold away, specifically no-op cases where
an operation's input and output are the same. Canonicalizing these away
removes unneeded operations.
The current version includes tensor cast operations to resolve shape
discreprencies that occur when an operation's result type differs from the
input type. These are resolved during a tosa shape propagation pass.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D107321
This enables querying shapes/values as shapes without mutating the IR
directly (e.g., towards enabling doing inference in analysis &
application steps, inferring function shape with constant from callsite,
...). Add a new ShapeAdaptor that abstracts over whether shape is from
Type or ShapedTypeComponents or DenseIntElementsAttribute. This adds new
accessors to ValueShapeRange to get Shape and value as shape, but
doesn't restrict or remove the previous way of accessing Type via the
Value for now, that does mean a less refined shape could be accidentally
queried and will be restricted in follow up.
Currently restricted Value query to what can be represented as Shape. So
only supports cases where constant subgraph evaluation's output is a
shape. I had considered making it more general, but without TBD extern
attribute concept or some such a user cannot today uniformly avoid
overhead.
Update TOSA ops and also the shape inference pass.
Differential Revision: https://reviews.llvm.org/D107768
We can propagate the shape from tosa.cond_if operands into the true/false
regions then through the connected blocks. Then, using the tosa.yield ops
we can determine what all possible return types are.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105940
Handles shape inference for identity, cast, and rescale. These were missed
during the initialy elementwise work. This includes resize shape propagation
which includes both attribute and input type based propagation.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105845
Make broadcastable needs the output shape to determine whether the operation
includes additional broadcasting. Include some canonicalizations for TOSA
to remove unneeded reshape.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D106846
Retaining old interface and should be constructable as previous, change would have been NFC except it this doesn't implicitly work with OpAdaptor generated in C++14.
Differential Revision: https://reviews.llvm.org/D106772
If this pass executes without shape inference its possible for unranked tensors
to appear in the IR. This pass should gracefully handle unranked tensors.
Differential Revision: https://reviews.llvm.org/D106617
Added shape inference handles cases for convolution operations. This includes
conv2d, conv3d, depthwise_conv2d, and transpose_conv2d. With transpose conv
we use the specified output shape when possible however will shape propagate
if the output shape attribute has dynamic values.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105645
Pool operations perform the same shape propagation. Included the shape
propagation and tests for these avg_pool2d and max_pool2d.
Differential Revision: https://reviews.llvm.org/D105665
Added InferReturnTypeComponents for NAry operations, reshape, and reverse.
With the additional tosa-infer-shapes pass, we can infer/propagate shapes
across a set of TOSA operations. Current version does not modify the
FuncOp type by inserting an unrealized conversion cast prior to any new
non-matchin returns.
Differential Revision: https://reviews.llvm.org/D105312
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070
Input/output types can be integers, which represent a quantized convolution.
Update verifier to expect this behavior.
Reviewed By: sjarus
Differential Revision: https://reviews.llvm.org/D104949
TosaMakeBroadcastable needs to include tosa.div, which was added later in the
specification.
Reviewed By: sjarus, NatashaKnk
Differential Revision: https://reviews.llvm.org/D104157
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
* Was missed in the initial submission and is required for a ConstantLike op.
* Also adds a materializeConstant hook to preserve it.
* Tightens up the argument constraint on tosa.const to match what is actually legal.
Differential Revision: https://reviews.llvm.org/D92040