Convert chained `spirv::BitcastOp` operations into
one `spirv::BitcastOp` operation.
Closestensorflow/mlir#238
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/238 from denis0x0D:sandbox/canon_bitcast 4352ed4f81b959ec92f849c599e733b62a99c010
PiperOrigin-RevId: 281129234
The assertion was introduced in the early days of dialect conversion
infrastructure when we had the matching function separate from the rewriting
function. The infrastructure evolved to have a common matchAndRewrite function
and the separate matching function was dropped without chaning the rewriting
that became matchAndRewrite. This has led to assertion being triggered. Return
a matchFailure instead of failing an assertion on unsupported types.
Closestensorflow/mlir#230
PiperOrigin-RevId: 281113741
This CL utilizies the more robust fusion feasibility analysis being built out in LoopFusionUtils, which will eventually be used to replace the current affine loop fusion pass.
PiperOrigin-RevId: 281112340
This improves consistency and will concretely avoid collisions between VectorExtractElementOp and ExtractElementOp when they are included in the same transforms / rewrites.
PiperOrigin-RevId: 281101588
This CL added op definitions for a few bit operations:
* OpBitFieldInsert
* OpBitFieldSExtract
* OpBitFieldUExtract
Closestensorflow/mlir#233
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/233 from denis0x0D:sandbox/bit_field_ops e7fd85b00d72d483d7992dc42b9cc4d673903455
PiperOrigin-RevId: 280691816
This modification will allow to easily plug lowering of linalg ops to different types of loops (affine, loop.for and other future constructs).
This is purely NFC for now.
PiperOrigin-RevId: 280652186
This is step 1/n in refactoring infrastructure along the Vector dialect to make it ready for retargetability and composable progressive lowering.
PiperOrigin-RevId: 280529784
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
dialect.
2) Add header files that expose functions to add patterns for the
dialects to SPIR-V lowering, as well as a pass that does the
dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871
The `Operator` class keeps an `arguments` field, which contains pointers
to `operands` and `attributes` elements. Thus it must be populated after
`operands` and `attributes` are finalized so to have stable pointers.
SmallVector may re-allocate when still having new elements added, which
will invalidate pointers.
PiperOrigin-RevId: 280466896
Previous commits removed all uses of LLVMTypeConverter::k*PosInMemRefDescriptor
outside of the MemRefDescriptor class. These numbers are an implementation
detail and can be hidden under a layer of more semantic APIs.
PiperOrigin-RevId: 280442444
Following up on the consolidation of MemRef descriptor conversion, update
Vector-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This also makes the types of
the attributes in emitted llvm.insert/extractelement operations consistently
i64 instead of a mix of index and i64.
PiperOrigin-RevId: 280441451
This CL moves VectorOps to Tablegen and cleans up the implementation.
This is almost NFC but 2 changes occur:
1. an interface change occurs in the padding value specification in vector_transfer_read:
the value becomes non-optional. As a shortcut we currently use %f0 for all paddings.
This should become an OpInterface for vectorization in the future.
2. the return type of vector.type_cast is trivial and simplified to `memref<vector<...>>`
Relevant roundtrip and invalid tests that used to sit in core are moved to the vector dialect.
The op documentation is moved to the .td file.
PiperOrigin-RevId: 280430869
Following up on the consolidation of MemRef descriptor conversion, update
Linalg-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This required MemRefDescriptor
to become publicly visible. Since this conversion is heavily EDSC-based,
introduce locally an additional wrapper that uses builder and location pointed
to by the EDSC context while emitting descriptor manipulation operations.
PiperOrigin-RevId: 280429228
Memref descriptor is becoming increasingly complex. Memrefs are manipulated by
multiple standard instructions, each of which has a non-trivial lowering to the
LLVM dialect. This leads to verbose code that manipulates the descriptors
exposing the internals of insert/extractelement opreations. Implement a wrapper
class that contains a memref descriptor and provides semantically named methods
that build the primitive IR operations instead.
PiperOrigin-RevId: 280371225
Expand local scope printing to skip printing aliases as aliases are printed out at the top of a module and may not be part of the output generated by local scope print.
PiperOrigin-RevId: 280278617
This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.
These will be fixed in subsequent commits after discussions.
PiperOrigin-RevId: 280250129
This is a quite complex operation that users are likely to attempt to write
themselves and get wrong (citation: users=me).
Ideally, we could pull this into FunctionLike, but for now, the
FunctionType rewriting makes it FuncOp specific. We would need some hook
for rewriting the function type (which for LLVM's func op, would need to
rewrite the underlying LLVM type).
PiperOrigin-RevId: 280234164
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.
PiperOrigin-RevId: 280226936
The current implementation silently fails if the '@' identifier isn't present, making it similar to the 'optional' parse methods. This change renames the current implementation to 'Optional' and adds a new 'parseSymbolName' that emits an error.
PiperOrigin-RevId: 280214610
Since VariableOp is serialized during processBlock, we add two more fields,
`functionHeader` and `functionBody`, to collect instructions for a function.
After all the blocks have been processed, we append them to the `functions`.
Also, fix a bug in processGlobalVariableOp. The global variables should be
encoded into `typesGlobalValues`.
PiperOrigin-RevId: 280105366
Lowering of CmpIOp, DivISOp, RemISOp, SubIOp and SelectOp to SPIR-V
dialect enables the lowering of operations generated by AffineExpr ->
StandardOps conversion into the SPIR-V dialect.
PiperOrigin-RevId: 280039204
The elements of a DictionaryAttr are guaranteed to be sorted by name, so we can use a more efficient lookup when searching for an attribute.
PiperOrigin-RevId: 280035488
Existing check that sets FuncOp to be dynamically legal was just
checking that the types of the argument are SPIR-V compatible. Since
the current conversion from GPU to SPIR-V does not handle lowering
non-kernel functions, change the legality check to verify that the
FuncOp has the gpu.kernel attribute and has void(void) return type.
PiperOrigin-RevId: 280032782
During deserialization, the loop header block will be moved into the
spv.loop's region. If the loop header block has block arguments,
we need to make sure it is correctly carried over to the block where
the new spv.loop resides.
During serialization, we need to make sure block arguments from the
spv.loop's entry block are not silently dropped.
PiperOrigin-RevId: 280021777
It is often helpful to inspect the operation that the error/warning/remark/etc. originated from, especially in the context of debugging or in the case of a verifier failure. This change adds an option 'mlir-print-op-on-diagnostic' that attaches the operation as a note to any diagnostic that is emitted on it via Operation::emit(Error|Warning|Remark). In the case of an error, the operation is printed in the generic form.
PiperOrigin-RevId: 280021438
loop::ForOp can be lowered to the structured control flow represented
by spirv::LoopOp by making the continue block of the spirv::LoopOp the
loop latch and the merge block the exit block. The resulting
spirv::LoopOp has a single back edge from the continue to header
block, and a single exit from header to merge.
PiperOrigin-RevId: 280015614
This causes the AsmPrinter to use a local value numbering when printing the IR, allowing for the printer to be used safely in a local context, e.g. to ensure thread-safety when printing the IR. This means that the IR printing instrumentation can also be used during multi-threading when module-scope is disabled. Operation::dump and DiagnosticArgument(Operation*) are also updated to always print local scope, as this is the most common use case when debugging.
PiperOrigin-RevId: 279988203
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.
In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.
After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.
This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).
PiperOrigin-RevId: 279959463
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
This operation is a companion operation to the std.view operation added as proposed in "Updates to the MLIR MemRefType" RFC.
PiperOrigin-RevId: 279766410
This code should be exercised using the existing kernel outlining unit test, but
let me know if I should add a dedicated unit test using a fake call instruction
as well.
PiperOrigin-RevId: 279436321
This also previously triggered the warning:
warning: missing field 'isRecursivelyLegal' initializer [-Wmissing-field-initializers]
legalOperations[op] = {action};
^
PiperOrigin-RevId: 279399175
This CL added op definitions for a few bit operations:
* OpShiftLeftLogical
* OpShiftRightArithmetic
* OpShiftRightLogical
* OpBitCount
* OpBitReverse
* OpNot
Also moved the definition of spv.BitwiseAnd to follow the
lexicographical order.
Closestensorflow/mlir#215
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/215 from denis0x0D:sandbox/bit_ops d9b0852b689ac6c4879a9740b1740a2357f44d24
PiperOrigin-RevId: 279350470
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.
PiperOrigin-RevId: 279132972