Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
AMDGPU and x86 at least both have separate controls for whether
denormal results are flushed on output, and for whether denormals are
implicitly treated as 0 as an input. The current DAGCombiner use only
really cares about the input treatment of denormals.
Summary:
Clang -fpic defaults to -fno-semantic-interposition (GCC -fpic defaults
to -fsemantic-interposition).
Users need to specify -fsemantic-interposition to get semantic
interposition behavior.
Semantic interposition is currently a best-effort feature. There may
still be some cases where it is not handled well.
Reviewers: peter.smith, rnk, serge-sans-paille, sfertile, jfb, jdoerfert
Subscribers: dschuff, jyknight, dylanmckay, nemanjai, jvesely, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, arphaman, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73865
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
First patch to support Safe Whole Program Devirtualization Enablement,
see RFC here: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Always emit !vcall_visibility metadata under -fwhole-program-vtables,
and not just for -fvirtual-function-elimination. The vcall visibility
metadata will (in a subsequent patch) be used to communicate to WPD
which vtables are safe to devirtualize, and we will optionally convert
the metadata to hidden visibility at link time. Subsequent follow on
patches will help enable this by adding vcall_visibility metadata to the
ThinLTO summaries, and always emit type test intrinsics under
-fwhole-program-vtables (and not just for vtables with hidden
visibility).
In order to do this safely with VFE, since for VFE all vtable loads must
be type checked loads which will no longer be the case, this patch adds
a new "Virtual Function Elim" module flag to communicate to GlobalDCE
whether to perform VFE using the vcall_visibility metadata.
One additional advantage of using the vcall_visibility metadata to drive
more WPD at LTO link time is that we can use the same mechanism to
enable more aggressive VFE at LTO link time as well. The link time
option proposed in the RFC will convert vcall_visibility metadata to
hidden (aka linkage unit visibility), which combined with
-fvirtual-function-elimination will allow it to be done more
aggressively at LTO link time under the same conditions.
Reviewers: pcc, ostannard, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, hiraditya, dexonsmith, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71907
Currently there are 4 different mechanisms for controlling denormal
flushing behavior, and about as many equivalent frontend controls.
- AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features
- NVPTX uses the nvptx-f32ftz attribute
- ARM directly uses the denormal-fp-math attribute
- Other targets indirectly use denormal-fp-math in one DAGCombine
- cl-denorms-are-zero has a corresponding denorms-are-zero attribute
AMDGPU wants a distinct control for f32 flushing from f16/f64, and as
far as I can tell the same is true for NVPTX (based on the attribute
name).
Work on consolidating these into the denormal-fp-math attribute, and a
new type specific denormal-fp-math-f32 variant. Only ARM seems to
support the two different flush modes, so this is overkill for the
other use cases. Ideally we would error on the unsupported
positive-zero mode on other targets from somewhere.
Move the logic for selecting the flush mode into the compiler driver,
instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32
are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as
a user flag.
-cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and
-fno-cuda-flush-denormals-to-zero will be mapped to
-fp-denormal-math-f32=ieee or preserve-sign rather than the old
attributes.
Stop emitting the denorms-are-zero attribute for the OpenCL flag. It
has no in-tree users. The meaning would also be target dependent, such
as the AMDGPU choice to treat this as only meaning allow flushing of
f32 and not f16 or f64. The naming is also potentially confusing,
since DAZ in other contexts refers to instructions implicitly treating
input denormals as zero, not necessarily flushing output denormals to
zero.
This also does not attempt to change the behavior for the current
attribute. The LangRef now states that the default is ieee behavior,
but this is inaccurate for the current implementation. The clang
handling is slightly hacky to avoid touching the existing
denormal-fp-math uses. Fixing this will be left for a future patch.
AMDGPU is still using the subtarget feature to control the denormal
mode, but the new attribute are now emitted. A future change will
switch this and remove the subtarget features.
The option will limit debug info by only emitting complete class
type information when its constructor is emitted.
This patch changes comparisons with LimitedDebugInfo to use the new
level instead.
Differential Revision: https://reviews.llvm.org/D72427
If a system header provides an (inline) implementation of some of their
function, clang still matches on the function name and generate the appropriate
llvm builtin, e.g. memcpy. This behavior is in line with glibc recommendation «
users may not provide their own version of symbols » but doesn't account for the
fact that glibc itself can provide inline version of some functions.
It is the case for the memcpy function when -D_FORTIFY_SOURCE=1 is on. In that
case an inline version of memcpy calls __memcpy_chk, a function that performs
extra runtime checks. Clang currently ignores the inline version and thus
provides no runtime check.
This code fixes the issue by detecting functions whose name is a builtin name
but also have an inline implementation.
Differential Revision: https://reviews.llvm.org/D71082
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch moves some of the code from CodeGen to create an
appropriate feature map that we can pass to the function.
Differential Revision: https://reviews.llvm.org/D68627
Commit d77ae1552f
("[DebugInfo] Support to emit debugInfo for extern variables")
added deebugInfo for extern variables for BPF target.
The commit is reverted by 891e25b02d
as the committed tests using %clang instead of %clang_cc1 causing
test failed in certain scenarios as reported by Reid Kleckner.
This patch fixed the tests by using %clang_cc1.
Differential Revision: https://reviews.llvm.org/D71818
This is a follow up patch to use the OpenMP-IR-Builder, as discussed on
the mailing list ([1] and later) and at the US Dev Meeting'19.
[1] http://lists.flang-compiler.org/pipermail/flang-dev_lists.flang-compiler.org/2019-May/000197.html
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69922
Summary:
Attribute annotations are recorded in a special global composite variable
that points to annotation strings and the annotated objects.
As a restriction of the LLVM IR type system, those pointers are all
pointers to address space 0, so let's insert an addrspacecast when the
annotated global is in a non-0 address space.
Since this addrspacecast is only reachable from the global annotations
object, this should allow us to represent annotations on all globals
regardless of which addrspacecasts are usually legal for the target.
Reviewers: rjmccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71208
Extern variable usage in BPF is different from traditional
pure user space application. Recent discussion in linux bpf
mailing list has two use cases where debug info types are
required to use extern variables:
- extern types are required to have a suitable interface
in libbpf (bpf loader) to provide kernel config parameters
to bpf programs.
https://lore.kernel.org/bpf/CAEf4BzYCNo5GeVGMhp3fhysQ=_axAf=23PtwaZs-yAyafmXC9g@mail.gmail.com/T/#t
- extern types are required so kernel bpf verifier can
verify program which uses external functions more precisely.
This will make later link with actual external function no
need to reverify.
https://lore.kernel.org/bpf/87eez4odqp.fsf@toke.dk/T/#m8d5c3e87ffe7f2764e02d722cb0d8cbc136880ed
This patch added clang support to emit debuginfo for extern variables
with a TargetInfo hook to enable it. The debuginfo for the
extern variable is emitted only if that extern variable is
referenced in the current compilation unit.
Currently, only BPF target enables to generate debug info for
extern variables. The emission of such debuginfo is disabled for C++
at this moment since BPF only supports a subset of C language.
Emission with C++ can be enabled later if an appropriate use case
is identified.
-fstandalone-debug permits us to see more debuginfo with the cost
of bloated binary size. This patch did not add emission of extern
variable debug info with -fstandalone-debug. This can be
re-evaluated if there is a real need.
Differential Revision: https://reviews.llvm.org/D70696
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch copies some of the code from CodeGen to create an
appropriate feature map that we can pass to the function. Probably
need some refactoring here to share more code with Codegen. Is
there a good place to do that? Also need to support the cpu_specific
attribute as well.
Differential Revision: https://reviews.llvm.org/D68627
Currently, it is a modified version of the Itanium ABI, with the only
change being that constructors and destructors return 'this'.
Differential Revision: https://reviews.llvm.org/D70575
Summary:
Currently, we ignore all locality attributes/info when building for
the device and thus all symblos are externally visible and can be
preemted at the runtime. It may lead to incorrect results. We need to
follow the same logic, compiler uses for static/pie builds. But in some
cases changing of dso locality may lead to problems with codegen, so
instead mark external symbols as hidden instead in the device code.
Reviewers: jdoerfert
Subscribers: guansong, caomhin, kkwli0, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70549
When the Dwarf Version metadata was initially added (r184276) there was
no support for Module::Max - though the comment suggested that was the
desired behavior. The original behavior was Module::Warn which would
warn and then pick whichever version came first - which is pretty
arbitrary/luck-based if the consumer has some need for one version or
the other.
Now that the functionality's been added (r303590) this change updates
the implementation to match the desired goal.
The general logic here is - if you compile /some/ of your program with a
more recent DWARF version, you must have a consumer that can handle it,
so might as well use it for /everything/.
The only place where this might fall down is if you have a need to use
an old tool (supporting only the older DWARF version) for some subset of
your program. In which case now it'll all be the higher version. That
seems pretty narrow (& the inverse could happen too - you specifically
/need/ the higher DWARF version for some extra expressivity, etc, in
some part of the program)
Partial revert of r372681 "Support for DWARF-5 C++ language tags".
The change introduced new external linkage languages ("C++11" and
"C++14") which not supported in C++.
It also changed the definition of the existing enum to use the DWARF
constants. The problem is that "LinkageSpecDeclBits.Language" (the field
that reserves this enum) is actually defined as 3 bits length
(bitfield), which cannot contain the new DWARF constants. Defining the
enum as integer literals is more appropriate for maintaining valid
values.
Differential Revision: https://reviews.llvm.org/D69935
always_inline.
The assertion in SetLLVMFunctionAttributesForDefinition used to fail
when there was attribute OptimizeNone on the AST function and attribute
always_inline on the IR function. This happens because base destructors
are annotated with always_inline when the code is compiled with
-fapple-kext (see r124757).
rdar://problem/57169694
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
Summary:
- Fix a bug which misses the change for a variable to be set with
target-specific attributes.
Reviewers: yaxunl
Subscribers: jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63020
When a target does not support pragma detect_mismatch, an llvm.linker.options
metadata with an empty entry is created, which causes diagnostic in backend
since backend expects name/value pair in llvm.linker.options entries.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D69678
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
Most of the functions emitted here should probably be convergent, but
only barriers are currently marked. Introduce this helper before
adding convergent to more functions.
Sometimes a global var is replaced by a different llvm value. clang use GetAddrOfGlobalVar to get the original llvm global variable.
For most targets, GetAddrOfGlobalVar returns either the llvm global variable or a bitcast of the llvm global variable.
However, for AMDGPU target, GetAddrOfGlobalVar returns the addrspace cast or addrspace cast plus bitcast of the llvm global variable.
To get the llvm global variable, these casts need to be stripped, otherwise there is assertion.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D69129
llvm-svn: 375362
The final list of OpenMP offload targets becomes known only at the link time and since offload registration code depends on the targets list it makes sense to delay offload registration code generation to the link time instead of adding it to the host part of every fat object. This patch moves offload registration code generation from clang to the offload wrapper tool.
This is the last part of the OpenMP linker script elimination patch https://reviews.llvm.org/D64943
Differential Revision: https://reviews.llvm.org/D68746
llvm-svn: 374937
"non-constant" value.
If the constant evaluator evaluates part of a variable initializer,
including the initializer for some lifetime-extended temporary, but
fails to fully evaluate the initializer, it can leave behind wrong
values for temporaries encountered in that initialization. Don't try to
emit those from CodeGen! Instead, look at the values that constant
evaluation produced if (and only if) it actually succeeds and we're
emitting the lifetime-extending declaration's initializer as a constant.
llvm-svn: 374119
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
has a constexpr destructor.
For constexpr variables, reject if the variable does not have constant
destruction. In all cases, do not emit runtime calls to the destructor
for variables with constant destruction.
llvm-svn: 373159
This patch provides support for DW_LANG_C_plus_plus_11,
DW_LANG_C_plus_plus_14 tags in the Clang C++ frontend.
Patch by Sourabh Singh Tomar!
Differential Revision: https://reviews.llvm.org/D67613
Reapplies r372663 after adapting a failing test in the LLDB testsuite.
llvm-svn: 372681
This patch provides support for DW_LANG_C_plus_plus_11,
DW_LANG_C_plus_plus_14 tags in the Clang C++ frontend.
Patch by Sourabh Singh Tomar!
Differential Revision: https://reviews.llvm.org/D67613
llvm-svn: 372663
Multi-versioned functions defined by cpu_dispatch and implemented with IFunc
can not be called outside the translation units where they are defined due to
lack of symbols. This patch add function aliases for these functions and thus
make them visible outside.
Differential Revision: https://reviews.llvm.org/D67058
Patch by Senran Zhang
llvm-svn: 371586
construct.
OpenMP 5.0 introduced new clause for declare target directive, device_type clause, which may accept values host, nohost, and any. Host means
that the function must be emitted only for the host, nohost - only for
the device, and any - for both, device and the host.
llvm-svn: 369775
Summary:
It seems that CodeGen was always using ExternalLinkage when emitting a
GlobalDecl with __attribute__((alias)). This leads to symbol
redefinitions (ODR) that cause failures at link time for static aliases.
This is readily attempting to link an ARM (32b) allyesconfig Linux
kernel built with Clang.
Reported-by: nathanchance
Suggested-by: ihalip
Link: https://bugs.llvm.org/show_bug.cgi?id=42377
Link: https://github.com/ClangBuiltLinux/linux/issues/631
Reviewers: rsmith, aaron.ballman, erichkeane
Reviewed By: aaron.ballman
Subscribers: javed.absar, kristof.beyls, cfe-commits, srhines, ihalip, nathanchance
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66492
llvm-svn: 369705
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
CFStrings should be 8-byte aligned when built for the Swift CF runtime
ABI as the atomic CF info field must be properly aligned. This is a
problem on 32-bit platforms which would give the structure 4-byte
alignment rather than 8-byte alignment.
llvm-svn: 368471
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
Pass NULL to pointer arg of __cxa_atexit if addr space
is not matching with its param. This doesn't align yet
with how dtors are generated that should be changed too.
Differential Revision: https://reviews.llvm.org/D62413
llvm-svn: 366059
This patch introduces support of hip_pinned_shadow variable for HIP.
A hip_pinned_shadow variable is a global variable with attribute hip_pinned_shadow.
It has external linkage on device side and has no initializer. It has internal
linkage on host side and has initializer or static constructor. It can be accessed
in both device code and host code.
This allows HIP runtime to implement support of HIP texture reference.
Differential Revision: https://reviews.llvm.org/D62738
llvm-svn: 364381
Summary:
This patch adds support for the handling of the variables under the declare target to clause.
The variables in this case are handled like link variables are. A pointer is created on the host and then mapped to the device. The runtime will then copy the address of the host variable in the device pointer.
Reviewers: ABataev, AlexEichenberger, caomhin
Reviewed By: ABataev
Subscribers: guansong, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63108
llvm-svn: 363959
Summary:
- Revise the interface to derive the stub name and simplify the
assertion of it.
Reviewers: yaxunl, tra
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63335
llvm-svn: 363553
'objc_arc_inert'
The attribute enables the ARC optimizer to delete ObjC ARC runtime calls
on the annotated globals (see https://reviews.llvm.org/D62433). We
currently only annotate global variables for string literals and global
blocks with the attribute.
rdar://problem/49839633
Differential Revision: https://reviews.llvm.org/D62831
llvm-svn: 363467
Summary:
- By declaring device variables as `static`, we assume they won't be
addressable from the host side. Thus, no `externally_initialized` is
required.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62603
llvm-svn: 361994
Recently D60274 was introduced to allow lld to handle dependent libs. However current
usage of dependent libs (e.g. pragma comment(lib, *) in windows header files) are intended
for host only. Emitting the metadata in device IR causes link error in device path.
Until there is a way to different it dependent libs for device or host, metadata for dependent
libs should be emitted for host only. This patch enforces that.
Differential Revision: https://reviews.llvm.org/D62483
llvm-svn: 361880
representing no such object, and an "Indeterminate" state representing
an uninitialized object. The latter is not yet used, but soon will be.
llvm-svn: 361328
Summary:
This patch adds support for the registration of the requires directives with the runtime.
Each requires directive clause will enable a particular flag to be set.
The set of flags is passed to the runtime to be checked for compatibility with other such flags coming from other object files.
The registration function is called whenever OpenMP is present even if a requires directive is not present. This helps detect cases in which requires directives are used inconsistently.
Reviewers: ABataev, AlexEichenberger, caomhin
Reviewed By: ABataev, AlexEichenberger
Subscribers: jholewinski, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60568
llvm-svn: 361298
Currently, we ignore all dso locality attributes/info when building for
the device and thus all symblos are externally visible and can be
preemted at the runtime. It may lead to incorrect results. We need to
follow the same logic, compiler uses for static/pie builds.
llvm-svn: 361283
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
Without this, I get e.g. 'PerformPendingInstantiations' -> 'std::fill',
now I get 'std::fill<unsigned long *, int>'.
Differential Revision: https://reviews.llvm.org/D61822
llvm-svn: 360539
We need to be able to enqueue internal function that initializes
global constructors on the host side. Therefore it has to be
converted to a kernel.
This change factors out common logic for adding kernel metadata
and moves it from CodeGenFunction to CodeGenModule in order to
make it accessible for the extra use case.
Differential revision: https://reviews.llvm.org/D61488
llvm-svn: 360342
Summary:
A COFF stub indirects the reference to a symbol through memory. A
.refptr.$sym global variable pointer is created to refer to $sym.
Typically mingw uses these for external global variable declarations,
but we can use them for weak function declarations as well.
Updates the dso_local classification to add a special case for
extern_weak symbols on COFF in both clang and LLVM.
Fixes PR37598
Reviewers: smeenai, mstorsjo
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61615
llvm-svn: 360207
This reverts r359250 (git commit 4730604bd3)
The newly added test should use -cc1 and -emit-llvm and there are other
test failures that need fixing.
llvm-svn: 359251
Statically link certain runtime library functions for MSVC/GNU Windows
environments. This is consistent with MSVC behavior.
Fixes LNK4286 and LNK4217 warnings from link.exe when linking the static
CRT:
LINK : warning LNK4286: symbol '__std_terminate' defined in 'libvcruntime.lib(ehhelpers.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.asan_noinst_test.cc.x86_64-calls.o'
LINK : warning LNK4286: symbol '__std_terminate' defined in 'libvcruntime.lib(ehhelpers.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.asan_test_main.cc.x86_64-calls.o'
LINK : warning LNK4217: symbol '_CxxThrowException' defined in 'libvcruntime.lib(throw.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.gtest-all.cc.x86_64-calls.o' in function '"int `public: static class UnitTest::GetInstance * __cdecl testing::UnitTest::GetInstance(void)'::`1'::dtor$5" (?dtor$5@?0??GetInstance@UnitTest@testing@@SAPEAV12@XZ@4HA)'
Reviewers: mstorsjo, efriedma, TomTan, compnerd, smeenai, mgrang
Subscribers: abdulras, theraven, smeenai, pcc, mehdi_amini, javed.absar, inglorion, kristof.beyls, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D55229
llvm-svn: 359250
AMDGPU currently relies on global properties being set before
setTargetProperties is called. Existing targets like MIPS which rely on
setTargetProperties do not rely on the current behavior, so this patch
moves the call later in SetFunctionAttributes.
Differential Revision: https://reviews.llvm.org/D60967
llvm-svn: 359039
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
For the global variables the allocate directive must specify only the
predefined allocator. This allocator must be translated into the correct
form of the address space for the targets that support different address
spaces.
llvm-svn: 356702
This patch adds an XCOFF triple object format type into LLVM.
This XCOFF triple object file type will be used later by object file and assembly generation for the AIX platform.
Differential Revision: https://reviews.llvm.org/D58930
llvm-svn: 355989
Add .stub to kernel stub function name so that it is different from kernel
name in device code. This is necessary to let debugger find correct symbol
for kernel.
Differential Revision: https://reviews.llvm.org/D58518
llvm-svn: 354948
Summary:
- If a string literal is reused directly, need to add necessary address
space casting if the target requires that.
Reviewers: yaxunl
Subscribers: jvesely, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58509
llvm-svn: 354610
__hipRegisterFunction and __hipRegisterVar need to accept device side kernel and variable names
so that HIP runtime can associate kernel stub functions in host code with kernel symbols in fat binaries,
and associate shadow variables in host code with device variables in fat binaries.
Currently, clang assumes kernel functions and device variables have the same name as the kernel
stub functions and shadow variables. However, when host is compiled in windows with MSVC C++
ABI and device is compiled with Itanium C++ ABI (e.g. AMDGPU), kernels and device symbols in fat
binary are mangled differently than host.
This patch gets the device side kernel and variable name by mangling them in the mangle context
of aux target.
Differential Revision: https://reviews.llvm.org/D58163
llvm-svn: 354004
This allows the global visibility controls to be restrictive while still
populating the dynamic symbol table where required.
Differential Revision: https://reviews.llvm.org/D56871
llvm-svn: 353870
The patch in r350643 incorrectly sets the COFF emission based on bits
instead of bytes. This patch converts the 32 via CharUnits to bits to
compare the correct values.
Change-Id: Icf38a16470ad5ae3531374969c033557ddb0d323
llvm-svn: 353411
Emit{Nounwind,}RuntimeCall{,OrInvoke} have been modified to take a
FunctionCallee as an argument, and CreateRuntimeFunction has been
modified to return a FunctionCallee. All callers have been updated.
Additionally, CreateBuiltinFunction is removed, as it was redundant
with CreateRuntimeFunction after some previous changes.
Differential Revision: https://reviews.llvm.org/D57668
llvm-svn: 353184
This argument was added in r254554 in order to support the
pass_object_size attribute. However, in r296076, the attribute's
presence is now also represented in FunctionProtoType's
ExtParameterInfo, and thus it's unnecessary to pass along a separate
FunctionDecl.
The functions modified are:
RequiredArgs::forPrototype{,Plus}, and
CodeGenTypes::ConvertFunctionType.
After this, it's also (again) unnecessary to have a separate
ConvertFunctionType function ConvertType, so convert callers back to
the latter, leaving the former as an internal helper function.
llvm-svn: 352946
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
Introduce an option to request global visibility settings be applied to
declarations without a definition or an explicit visibility, rather than
the existing behavior of giving these default visibility. When the
visibility of all or most extern definitions are known this allows for
the same optimisations -fvisibility permits without updating source code
to annotate all declarations.
Differential Revision: https://reviews.llvm.org/D56868
llvm-svn: 352391
This code doesn't need to traverse types, lambdas, template arguments,
etc to detect trivial recursion. We can do a basic statement traversal
instead. This reduces the time spent compiling CodeGenModule.cpp, the
object file size (mostly reduced debug info), and the final executable
size by a small amount. I measured the exe mostly to check how much of
the overhead is from debug info, object file section headers, etc, vs
actual code.
metric | before | after | diff
time (s) | 47.4 | 38.5 | -8.9
obj (kb) | 12888 | 12012 | -876
exe (kb) | 86072 | 85996 | -76
llvm-svn: 352232
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
With commit r351627, LLVM gained the ability to apply (existing) IPO
optimizations on indirections through callbacks, or transitive calls.
The general idea is that we use an abstraction to hide the middle man
and represent the callback call in the context of the initial caller.
It is described in more detail in the commit message of the LLVM patch
r351627, the llvm::AbstractCallSite class description, and the
language reference section on callback-metadata.
This commit enables clang to emit !callback metadata that is
understood by LLVM. It does so in three different cases:
1) For known broker functions declarations that are directly
generated, e.g., __kmpc_fork_call for the OpenMP pragma parallel.
2) For known broker functions that are identified by their name and
source location through the builtin detection, e.g.,
pthread_create from the POSIX thread API.
3) For user annotated functions that carry the "callback(callee, ...)"
attribute. The attribute has to include the name, or index, of
the callback callee and how the passed arguments can be
identified (as many as the callback callee has). See the callback
attribute documentation for detailed information.
Differential Revision: https://reviews.llvm.org/D55483
llvm-svn: 351629
This is an initial implementation for msp430 toolchain including
-mmcu option support
-mhwmult options support
-integrated-as by default
The toolchain uses msp430-elf-as as a linker and supports msp430-gcc toolchain tree.
Patch by Kristina Bessonova!
Differential Revision: https://reviews.llvm.org/D56658
llvm-svn: 351228
After a discussion on the commit thread, it seems the 32 byte alignment
limitation is an MSVC toolchain artifact, not an inherent COFF
restriction. Clarify the comment accordingly, since saying COFF in the
comment but using isKnownWindowsMSVCEnvironment in the conditional is
confusing. Also add a newline before the comment, which is consistent
with the local style.
Differential Revision: https://reviews.llvm.org/D56466
llvm-svn: 350754
As reported in PR33035, LLVM crashes if given a common object with an
alignment of greater than 32 bits. This is because the COFF file format
does not support these alignments, so emitting them is broken anyway.
This patch changes any global definitions greater than 32 bit alignment
to no longer be in 'common'.
https://bugs.llvm.org/show_bug.cgi?id=33035
Differential Revision: https://reviews.llvm.org/D56391
Change-Id: I48609289753b7f3b58c5e2bc1712756750fbd45a
llvm-svn: 350643
The autolinking extension for ELF uses a slightly different format for
encoding the autolink information compared to COFF and MachO. Account
for this in the CGM to ensure that we do not assert when emitting
assembly or an object file.
llvm-svn: 350476
This fixes compiler crash when we attempted to compile this code:
extern __device__ int data;
__device__ int data = 1;
Differential Revision: https://reviews.llvm.org/D56033
llvm-svn: 349981
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
The host-side code can't (and should not) access the values that may
only exist on the device side. E.g. address of a __device__ function
does not exist on the host side as we don't generate the code for it there.
Differential Revision: https://reviews.llvm.org/D55663
llvm-svn: 349087
Inline cpu_specific versions referenced before the cpu_dispatch function
weren't properly emitted, since they hadn't been referred to. This
patch ensures that during resolver generation that all appropriate
versions are emitted.
Change-Id: I94c3766aaf9c75ca07a0ad8258efdbb834654ff8
llvm-svn: 348600
Declarations without the attribute were disallowed because it would be
ambiguous which 'target' it was supposed to be on. For example:
void ___attribute__((target("v1"))) foo();
void foo(); // Redecl of above, or fwd decl of below?
void ___attribute__((target("v2"))) foo();
However, a first declaration doesn't have that problem, and erroring
prevents it from working in cases where the forward declaration is
useful.
Additionally, a forward declaration of target==default wouldn't properly
cause multiversioning, so this patch fixes that.
The patch was not split since the 'default' fix would require
implementing the same check for that case, followed by undoing the same
change for the fwd-decl implementation.
Change-Id: I66f2c5bc2477bcd3f7544b9c16c83ece257077b0
llvm-svn: 347805
Summary:
Experience has shown that the functionality is useful. It makes linking
optimized clang with debug info for me a lot faster, 20s to 13s. The
type merging phase of PDB writing goes from 10s to 3s.
This removes the LLVM cl::opt and replaces it with a metadata flag.
After this change, users can do the following to use ghash:
- add -gcodeview-ghash to compiler flags
- replace /DEBUG with /DEBUG:GHASH in linker flags
Reviewers: zturner, hans, thakis, takuto.ikuta
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D54370
llvm-svn: 347072
As suggested by Richard Smith, and initially put up for review here:
https://reviews.llvm.org/D53341, this patch removes a hack that was used
to ensure that proper target-feature lists were used when emitting
cpu-dispatch (and eventually, target-clones) implementations. As a part
of this, the GlobalDecl object is proliferated to a bunch more
locations.
Originally, this was put up for review (see above) to get acceptance on
the approach, though discussion with Richard in San Diego showed he
approved of the approach taken here. Thus, I believe this is acceptable
for Review-After-commit
Differential Revision: https://reviews.llvm.org/D53341
Change-Id: I0a0bd673340d334d93feac789d653e03d9f6b1d5
llvm-svn: 346757
This patch modifies clang so that, if compiling for a target that
explicitly specifies a nonzero program memory address space, the
constructor list global will have the same address space as the
functions it contains.
AVR is the only in-tree backend which has a nonzero program memory
address space.
Without this, the IR verifier would always fail if a constructor
was used on a Harvard architecture backend.
This has no functional change to any in-tree backends except AVR.
llvm-svn: 346520
The member type creation for a cpu-dispatch function was not correctly
including the 'this' parameter, so ensure that the type is properly
determined. Also, disable defer in the cases of emitting the functoins,
as it can end up resulting in the wrong version being emitted.
Change-Id: I0b8fc5e0b0d1ae1a9d98fd54f35f27f6e5d5d083
llvm-svn: 345838
When a dispatch function was being emitted that had both a generic and a
pentium configuration listed, we would assert. This is because neither
configuration has any 'features' associated with it so they were both
considered the 'default' version. 'pentium' lacks any features because
we implement it in terms of __builtin_cpu_supports (instead of Intel
proprietary checks), which is unable to decern between the two.
The fix for this is to omit the 'generic' version from the dispatcher if
both are present. This permits existing code to compile, and still will
choose the 'best' version available (since 'pentium' is technically
better than 'generic').
Change-Id: I4b69f3e0344e74cbdbb04497845d5895dd05fda0
llvm-svn: 345826
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
This corrects the leader for the swift names. The encoding for 4.2 and
5.0 differ by a single bit on the second character and were swapped.
llvm-svn: 345360
storage class.
To be more in line with what GCC does, switch the condition to be based
on the Static Storage duration instead of the storage class.
Change-Id: I8e959d762433cda48855099353bf3c950b9d54b8
llvm-svn: 345302
Similar to how ICC handles CPU-Dispatch on Windows, this patch uses the
resolver function directly to forward the call to the proper function.
This is not nearly as efficient as IFuncs of course, but is still quite
useful for large functions specifically developed for certain
processors.
This is unfortunately still limited to x86, since it depends on
__builtin_cpu_supports and __builtin_cpu_is, which are x86 builtins.
The naming for the resolver/forwarding function for cpu-dispatch was
taken from ICC's implementation, which uses the unmodified name for this
(no mangling additions). This is possible, since cpu-dispatch uses '.A'
for the 'default' version.
In 'target' multiversioning, this function keeps the '.resolver'
extension in order to keep the default function keeping the default
mangling.
Change-Id: I4731555a39be26c7ad59a2d8fda6fa1a50f73284
Differential Revision: https://reviews.llvm.org/D53586
llvm-svn: 345298
Add a new driver level flag `-fcf-runtime-abi=` that allows one to specify the
runtime ABI for CoreFoundation. This controls the language interoperability.
In particular, this is relevant for generating the CFConstantString classes
(primarily through the `__builtin___CFStringMakeConstantString` builtin) which
construct a reference to the "CFObject"'s `isa` field. This type differs
between swift 4.1 and 4.2+.
Valid values for the new option include:
- objc [default behaviour] - enable ObjectiveC interoperability
- swift-4.1 - enable interoperability with swift 4.1
- swift-4.2 - enable interoperability with swift 4.2
- swift-5.0 - enable interoperability with swift 5.0
- swift [alias] - target the latest swift ABI
Furthermore, swift 4.2+ changed the layout for the CFString when building
CoreFoundation *without* ObjectiveC interoperability. In such a case, a field
was added to the CFObject base type changing it from: <{ const int*, int }> to
<{ uintptr_t, uintptr_t, uint64_t }>.
In swift 5.0, the CFString type will be further adjusted to change the length
from a uint32_t on everything but BE LP64 targets to uint64_t.
Note that the default behaviour for clang remains unchanged and the new layout
must be explicitly opted into via `-fcf-runtime-abi=swift*`.
llvm-svn: 345222
Extract the reference to the ASTContext and Triple and use them throughout the
function. This is simply a cosmetic cleanup while in the area. NFC.
llvm-svn: 345160
For instantiated functions, search the template pattern to see if it marked
inline to determine if InlineHint attribute should be added to the function.
llvm-svn: 344987
Since multiversion variant functions can be inline, in C they become
available-externally linkage. This ends up causing the variants to not
be emitted, and not available to the linker.
The solution is to make sure that multiversion functions are always
emitted by marking them linkonce.
Change-Id: I897aa37c7cbba0c1eb2c57ee881d5000a2113b75
llvm-svn: 344957
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
llvm-svn: 344199
When ifunc support was added to Clang (r265917) it did not allow
resolvers to take function arguments. This was based on GCC's
documentation, which states resolvers return a pointer and take no
arguments.
However, GCC actually allows resolvers to take arguments, and glibc (on
non-x86 platforms) and FreeBSD (on x86 and arm64) pass some CPU
identification information as arguments to ifunc resolvers. I believe
GCC's documentation is simply incorrect / out-of-date.
FreeBSD already removed the prohibition in their in-tree Clang copy.
Differential Revision: https://reviews.llvm.org/D52703
llvm-svn: 344100
There are a few leftovers of rC343147 that are not (\w+)\.begin but in
the form of ([-[:alnum:]>.]+)\.begin or spanning two lines. Change them
to use the container form in this commit. The 12 occurrences have been
inspected manually for safety.
llvm-svn: 343425
Add support for OMP5.0 requires directive and unified_address clause.
Patches to follow will include support for additional clauses.
Differential Revision: https://reviews.llvm.org/D52359
llvm-svn: 343063
Relanding rL342883 with more fragmented tests to test ELF-specific
section emission separately from broad-scope CFString tests. Now this
tests the following separately
1). CoreFoundation builds and linkage for ELF while building it.
2). CFString ELF section emission outside CF in assembly output.
3). Broad scope `cfstring3.c` tests which cover all object formats at
bitcode level and assembly level (including ELF).
This fixes non-bridged CoreFoundation builds on ELF targets
that use -fconstant-cfstrings. The original changes from differential
for a similar patch to PE/COFF (https://reviews.llvm.org/D44491) did not
check for an edge case where the global could be a constant which surfaced
as an issue when building for ELF because of different linkage semantics.
This patch addresses several issues with crashes related to CF builds on ELF
as well as improves data layout by ensuring string literals that back
the actual CFConstStrings end up in .rodata in line with Mach-O.
Change itself tested with CoreFoundation on Linux x86_64 but should be valid
for BSD-like systems as well that use ELF as the native object format.
Differential Revision: https://reviews.llvm.org/D52344
llvm-svn: 343038
[Clang][CodeGen][ObjC]: Fix non-bridged CoreFoundation builds on ELF targets
that use `-fconstant-cfstrings`. The original changes from differential
for a similar patch to PE/COFF (https://reviews.llvm.org/D44491) did not
check for an edge case where the global could be a constant which surfaced
as an issue when building for ELF because of different linkage semantics.
This patch addresses several issues with crashes related to CF builds on ELF
as well as improves data layout by ensuring string literals that back
the actual CFConstStrings end up in .rodata in line with Mach-O.
Change itself tested with CoreFoundation on Linux x86_64 but should be valid
for BSD-like systems as well that use ELF as the native object format.
Differential Revision: https://reviews.llvm.org/D52344
llvm-svn: 342883