underlying decls. Preserve the found declaration throughout, and only map to
the underlying declaration when we want to check whether it's the right kind.
This allows us to provide the right source location for the found declaration,
and prepares for the possibility of underlying decls with a different name
from the found decl.
llvm-svn: 256575
is complete (with an error produced if not) and a function that merely queries
whether the type is complete. Either way we'll trigger instantiation if
necessary, but only the former will diagnose and recover from missing module
imports.
The intent of this change is to prevent a class of bugs where code would call
RequireCompleteType(..., 0) and then ignore the result. With modules, we must
check the return value and use it to determine whether the definition of the
type is visible.
This also fixes a debug info quality issue: calls to isCompleteType do not
trigger the emission of debug information for a type in limited-debug-info
mode. This allows us to avoid emitting debug information for type definitions
in more cases where we believe it is safe to do so.
llvm-svn: 256049
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
Also address a typo from a prior patch that performed a similar fix during Parsing of default non-type template arguments. I left the RAII ExpressionEvaluationContext variable Name as Unevaluated though we had switched the context to ConstantEvaluated.
There should be no functionality change here - since when expression evaluation context is popped off, for the most part these two contexts currently behave similarly in regards to lambda diagnostics and odr-use tracking.
Like its parsing counterpart, this patch presages the advent of constexpr lambda patches...
llvm-svn: 253590
We created a malformed TemplateSpecializationType: it was dependent but
had a RecordType as it's canonical type. This would lead getAs to
crash. r249090 worked around this but we should fix this for real by
providing a more appropriate template specialization type as the
canonical type.
This fixes PR24246.
llvm-svn: 253495
This new builtin template allows for incredibly fast instantiations of
templates like std::integer_sequence.
Performance numbers follow:
My work station has 64 GB of ram + 20 Xeon Cores at 2.8 GHz.
__make_integer_seq<std::integer_sequence, int, 90000> takes 0.25
seconds.
std::make_integer_sequence<int, 90000> takes unbound time, it is still
running. Clang is consuming gigabytes of memory.
Differential Revision: http://reviews.llvm.org/D13786
llvm-svn: 252036
partial specialization can perform conversions on the argument. Be sure we
start again from the original argument when checking each possible template.
llvm-svn: 249114
We used to only select an inheritance model if the pointer to member was
nullptr. Instead, select a model regardless of the member pointer's
value.
N.B. This bug was exposed by making member pointers report true for
isIncompleteType but has been latent since the member pointer scheme's
inception.
llvm-svn: 247464
It's possible for TagRedeclarations to involve decls without a name,
ie, anonymous enums. We hit some undefined behaviour if we bind these
null names to the reference here.
We never dereference the name, so it's harmless if it's null - make it
a pointer to allow that.
Fixes the Modules/submodules-merge-defs.cpp test under ubsan.
llvm-svn: 241963
an existing using shadow declaration if they define entities of the same kind
in different namespaces.
We'd previously check this consistently if the using-declaration came after the
other declaration, but not if it came before.
llvm-svn: 241428
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This is a follow-up to r225570 which enabled adding DLL attributes when a
class template goes from explicit instantiation declaration to explicit
instantiation definition.
llvm-svn: 239375
Previously, we wouldn't call checkDLLAttribute() after the class template
specialization definition if the class template was already instantiated
by an explicit class template specialization declaration.
llvm-svn: 238266
Clang was inserting these into a dense map. While it never iterated the
dense map during normal compilation, it did when emitting a module. Fix
this by using a standard MapVector to preserve the order in which we
encounter the late parsed templates.
I suspect this still isn't ideal, as we don't seem to remove things from
this map even when we mark the templates as no longer late parsed. But
I don't know enough about this particular extension to craft a nice,
subtle test case covering this. I've managed to get the stress test to
at least do some late parsing and demonstrate the core problem here.
This patch fixes the test and provides deterministic behavior which is
a strict improvement over the prior state.
I've cleaned up some of the code here as well to be explicit about
inserting when that is what is actually going on.
llvm-svn: 233264
MS compiler emits no errors in case of explicit specializations outside declaration enclosing namespaces, even when language extensions are disabled.
The patch is to suppress errors and emit extension warnings if explicit specializations are not declared in the corresponding namespaces.
This fixes PR13738.
Patch by Alexey Frolov.
Differential Revision: http://reviews.llvm.org/D8283
llvm-svn: 232800
and only update the orginal list on a valid arugment list. When checking an
individual expression template argument, and conversions are required, update
the expression in the template argument. Since template arguments are
speculatively checked, the copying of the template argument list prevents
updating the template arguments when the list does not match the template.
Additionally, clean up the integer checking code in the template diffing code.
The code performs unneccessary conversions from APSInt to APInt.
Fixes PR21758.
This essentially reverts r224770 to recommits r224667 and r224668 with extra
changes to prevent the template instantiation problems seen in PR22006.
A test to catch the discovered problem is also added.
llvm-svn: 226983
Clang would previously become confused and crash here.
It does not make a lot of sense to export these, so warning seems appropriate.
MSVC will export some member functions for this kind of specializations, whereas
MinGW ignores the dllexport-edness. The latter behaviour seems better.
Differential Revision: http://reviews.llvm.org/D6984
llvm-svn: 226208
When a non-type template argument expression needs a conversion to change it
into the argument type, preserve that information by remaking the
TemplateArgument with an expression that has those conversions. Also a small
fix to template type diffing to handle the extra conversions in some cases.
llvm-svn: 224667
Consider a template class with attributes on a method, and an explicit
specialization of that method:
template <int>
struct A {
void foo() final;
};
template <>
void A<0>::foo() {}
In this example, the attribute is `final`, but it might also be an
__attribute__((visibility("foo"))), noreturn, inline, etc. clang's current
behavior is to strip all attributes, which for some attributes is wrong
(the snippet above allows a subclass of A<0> to override the final method, for
example) and for others disagrees with gcc.
So stop dropping attributes. r95845 added this code without a test case, and
r176728 added the code for dropping attributes on parameters (with tests, but
they still pass).
As an additional wrinkle, do drop dllimport and dllexport, since that's how
these two attributes work. (This is covered by existing tests.)
Fixes PR21942.
The approach is by Richard Smith, initial analysis and typing was done by me.
With this, clang also matches GCC and EDG on all attributes Richard tested.
llvm-svn: 224651
This reverts commit r224451. It caused us to reject some valid existing
code.
This code appears to run in non-error cases as well as error cases. If
the scope of a DependentScopeDeclRefExpr is still incomplete it probably
means we still have more instantiation to do.
llvm-svn: 224526
exact type match for deduced template arguments, and be sure to produce correct
canonical TemplateArgument representations to enable correct redeclaration
matching.
llvm-svn: 224456
A DependentScopeDeclRefExpr should always have a nested name specifier.
During template instantiation, if we found that the named context was
incomplete, we would previously build a DependentScopeDeclRefExpr with
an empty qualifier.
This error recovery path has been asserting for some time. The other
error codepaths use ExprError, so we can do the same.
Fixes PR21864.
llvm-svn: 224451
We don't yet support pointer-to-member template arguments that have undergone
pointer-to-member conversions, mostly because we don't have a mangling for them yet.
llvm-svn: 222807
expansion into a parameter pack; we know that we're still filling in that
parameter's arguments. Previously, if we hit this case for an alias template,
we'd try to substitute using non-canonical template arguments.
llvm-svn: 221832
penultimate parameter of a template parameter list, where the last parameter is
itself a pack, and build a bogus empty final pack argument.
llvm-svn: 221748
According to C++ standard if an exception-specification is specified in an explicit instantiation directive, it shall be compatible with the exception-specifications of other declarations of that function. This patch adds checks for this.
Differential Revision: http://reviews.llvm.org/D5822
llvm-svn: 221448