This new version is much more aggressive about doing "full" reduction in
cases where it reduces register pressure, and also more aggressive about
rewriting induction variables to count down (or up) to zero when doing so
reduces register pressure.
It currently uses fairly simplistic algorithms for finding reuse
opportunities, but it introduces a new framework allows it to combine
multiple strategies at once to form hybrid solutions, instead of doing
all full-reduction or all base+index.
llvm-svn: 94061
of int initializers), change some methods to be static functions,
use raw_ostream::write_hex instead of a smallstring dance with
APValue::toStringUnsigned(S, 16).
llvm-svn: 93991
doing global variable classification anymore) and hookized, sink almost
all target targets global variable emission code into AsmPrinter and out
of each target.
Some notes:
1. PIC16 does completely custom and crazy stuff, so it is not changed.
2. XCore has some custom handling for extra directives. I'll look at it next.
3. This switches linux/ppc to use .globl instead of .global. If .globl is
actually wrong, let me know and I'll fix it.
4. This makes linux/ppc get a lot of random cases right which were obviously
wrong before, it is probably now a bit healthier.
5. Blackfin will probably start getting .comm and other things that it didn't
before. If this is undesirable, it should explicitly opt out of these
things by clearing the relevant fields of MCAsmInfo.
This leads to a nice diffstat:
14 files changed, 127 insertions(+), 830 deletions(-)
llvm-svn: 93858
GCC would put weak zero initialized mutable data in the .bss section,
we would put it into a crasy '.gnu.linkonce.b.test,"aw",@nobits'
section. Fixing this will allow simplifications next up.
llvm-svn: 93844
Instcombine does this but apparently there are situations where this pattern will escape the optimizer and / or created by isel. Here is a case that's seen in JavaScriptCore:
%t1 = sub i32 0, %a
%t2 = add i32 %t1, -1
The dag combiner pattern: ((c1-A)+c2) -> (c1+c2)-A
will fold it to -1 - %a.
llvm-svn: 93773
adding an "i" to the suffix, indicating that the elements are integers, is
accepted but not part of the standard syntax. This helps us pass a few more
of the Neon tests from gcc.
llvm-svn: 93677
different BlockAddress labels, but nothing semantically important.
Add a FIXME that BlockAddress codegen is broken if the LLVM BB has
an empty name (e.g. strip was run).
llvm-svn: 93303
For now, this pass is fairly conservative. It only perform the replacement when both the pre- and post- extension values are used in the block. It will miss cases where the post-extension values are live, but not used.
llvm-svn: 93278
has an immediate with at least 32 bits of leading zeros, to avoid needing to
materialize that immediate in a register first.
FileCheckize, tidy, and extend a testcase to cover this case.
This fixes rdar://7527390.
llvm-svn: 93160
new AsmPrinter. This is perhaps less elegant than describing them
in terms of MOV32r0 and subreg operations, but it allows the
current register to rematerialize them.
llvm-svn: 93158
ignore alignment requirements for SIMD memory operands. This
is useful on architectures like the AMD 10h that do not trap on
unaligned references if a status bit is twiddled at startup time.
llvm-svn: 93151
R11, and then asserting that the target was in R9. Since R9 isn't reserved for
the target anymore, and is used as an argument, this patch changes the
assertion.
llvm-svn: 93065
really does need to be a vector type, because
TargetLowering::getOperationAction for SIGN_EXTEND_INREG uses that type,
and it needs to be able to distinguish between vectors and scalars.
Also, fix some more issues with legalization of vector casts.
llvm-svn: 93043
When folding a and(any_ext(load)) both the any_ext and the
load have to have only a single use.
This removes the anyext-uses.ll testcase which started failing
because it is unreduced and unclear what it is testing.
llvm-svn: 92950
(OP (trunc x), (trunc y)) -> (trunc (OP x, y))
Unfortunately this simple change causes dag combine to infinite looping. The problem is the shrink demanded ops optimization tend to canonicalize expressions in the opposite manner. That is badness. This patch disable those optimizations in dag combine but instead it is done as a late pass in sdisel.
This also exposes some deficiencies in dag combine and x86 setcc / brcond lowering. Teach them to look pass ISD::TRUNCATE in various places.
llvm-svn: 92849
(X != null) | (Y != null) --> (X|Y) != 0
(X == null) & (Y == null) --> (X|Y) == 0
so that instcombine can stop doing this for pointers. This is part of PR3351,
which is a case where instcombine doing this for pointers (inserting ptrtoint)
is pessimizing code.
llvm-svn: 92406
multiply sequence when the power is a constant integer. Before, our
codegen for std::pow(.., int) always turned into a libcall, which was
really inefficient.
This should also make many gfortran programs happier I'd imagine.
llvm-svn: 92388
compare. On other targets we end up with a call to memcmp because we don't
want 16 individual byte loads. We should be able to use movups as well, but
we're failing to select the generated icmp.
llvm-svn: 92107
SDISel. This optimization was causing simplifylibcalls to
introduce type-unsafe nastiness. This is the first step, I'll be
expanding the memcmp optimizations shortly, covering things that
we really really wouldn't want simplifylibcalls to do.
llvm-svn: 92098
be non-optimal. To be precise, we should avoid folding loads if the instructions
only update part of the destination register, and the non-updated part is not
needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these instructions breaks
the partial register dependency and it can improve performance. e.g.
movss (%rdi), %xmm0
cvtss2sd %xmm0, %xmm0
instead of
cvtss2sd (%rdi), %xmm0
An alternative method to break dependency is to clear the register first. e.g.
xorps %xmm0, %xmm0
cvtss2sd (%rdi), %xmm0
llvm-svn: 91672