affected after a PHI node has been analyzed, just remove affected
SCEVs from the Scalars map, so that they'll be (lazily) recreated as
needed. This avoids creating SCEV objects that aren't actually needed.
Also, rewrite the associated def-use walking code to be non-recursive
and to continue traversing past Instructions that don't have an
entry in the Scalars map.
llvm-svn: 77032
(x pred y) with more thorough code that does more complete canonicalization
before resorting to range checks. This helps it find more cases where
the canonicalized expressions match.
llvm-svn: 76671
Getelementptrs that are defined to wrap are virtually useless to
optimization, and getelementptrs that are undefined on any kind
of overflow are too restrictive -- it's difficult to ensure that
all intermediate addresses are within bounds. I'm going to take
a different approach.
Remove a few optimizations that depended on this flag.
llvm-svn: 76437
in a convenient manner, factoring out some common code from
InstructionCombining and ValueTracking. Move the contents of
BinaryOperators.h into Operator.h and use Operator to generalize them
to support ConstantExprs as well as Instructions.
llvm-svn: 76232
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
SCEVZeroExtendExpr ahead of the most expensive analysis. This
speeds up analysis and helps avoid pathologically bad behavior
on the testcase in PR4534.
llvm-svn: 75496
This involves temporarily hard wiring some parts to use the global context. This isn't ideal, but it's
the only way I could figure out to make this process vaguely incremental.
llvm-svn: 75445
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
llvm-svn: 75379
to a loop deletion more thorough. Don't prune the def-use tree search at
instructions that don't have SCEVs computed, because an instruction with
a user that has a computed SCEV may itself lack a computed SCEV. Also,
remove loop-related values from the ValuesAtScopes and
ConstantEvolutionLoopExitValues maps as well.
This fixes a regression in 483.xalancbmk.
llvm-svn: 75030
Constant. This lets ConstantInts be handled as SCEVConstant instead
of SCEVUnknown, as getUnknown no longer has special-case code for
ConstantInt and friends. This usually doesn't affect the final
output, since the constants end up getting folded later, but it
does make intermediate expressions more obvious in many cases.
llvm-svn: 74459
an individual exhaustive evaluation reflects only the exit value
implied by an individual exit, which may differ from the actual
exit value of the loop if there are other exits. This fixes PR4477.
llvm-svn: 74447
nesting order of nested AddRec expressions to skip the transformation
if it would introduce an AddRec with operands not loop-invariant
with respect to its loop.
llvm-svn: 74343
trip counts in more cases.
Generalize ScalarEvolution's isLoopGuardedByCond code to recognize
And and Or conditions, splitting the code out into an
isNecessaryCond helper function so that it can evaluate Ands and Ors
recursively, and make SCEVExpander be much more aggressive about
hoisting instructions out of loops.
test/CodeGen/X86/pr3495.ll has an additional instruction now, but
it appears to be due to an arbitrary register allocation difference.
llvm-svn: 74048
createSCEV. Also, recognize UndefValue in createSCEV.
Change getIntegerSCEV's comment to avoid mentioning FP types,
and re-implement it in terms of getConstant instead of getUnknown.
llvm-svn: 74041
This also throws out the SCEV reference counting scheme, as the the SCEVs now have a lifetime controlled by the
ScalarEvolution pass.
Note that SCEVHandle is now a no-op, and will be remove in a future commit.
llvm-svn: 73892
counts for loops with multiple exits, replacing more conservative code
which only handled constants. This is derived from a patch by
Nick Lewycky.
This also fixes llc aborts in ClamAV and others, as
getUMinFromMismatchedTypes takes care of balancing the types before
working with them.
llvm-svn: 73884
blocks, and also exit blocks with multiple conditions (combined
with (bitwise) ands and ors). It's often infeasible to compute an
exact trip count in such cases, but a useful upper bound can often
be found.
llvm-svn: 73866
SCEVUnknowns with identical Instructions to be equal. This allows
it to analze cases such as the attached testcase, where the front-end
has cloned the loop controlling expression. Along with r73805, this
lets IndVarSimplify eliminate all the sign-extend casts in the
loop in the attached testcase.
llvm-svn: 73807
so that it can access the TargetData member (when available) and
use ValueTracking.h information to compute information for
SCEVUnknown Values.
Also add GetMinLeadingZeros and GetMinSignBits functions,
with minimal implementations.
llvm-svn: 73794
obscuring what would otherwise be a low-bits mask. Use ComputeMaskedBits
to compute what ShrinkDemandedConstant knew about to reconstruct a
low-bits mask value.
llvm-svn: 73540
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
llvm-svn: 73431
they contain multiplications of constants with add operations.
This helps simplify several kinds of things; in particular it
helps simplify expressions like ((-1 * (%a + %b)) + %a) to %b,
as expressions like this often come up in loop trip count
computations.
llvm-svn: 73361
even though the order doesn't matter at the top level of an expression,
it does matter when the constant is a subexpression of an n-ary
expression, because n-ary expressions are sorted lexicographically.
llvm-svn: 73358
that of the LHS. It doesn't matter for correctness, but the LHS
is more likely than the RHS to be a pointer type in exotic cases,
and it's more tidy to have it return the integer type.
llvm-svn: 72424
in the case where a loop exit value cannot be computed, instead of only in
some cases while using SCEVCouldNotCompute in others. This simplifies
getSCEVAtScope's callers.
llvm-svn: 72375
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
llvm-svn: 72093