When a call site with noalias metadata is inlined, that metadata can be
propagated directly to the inlined instructions (only those that might access
memory because it is not useful on the others). Prior to inlining, the noalias
metadata could express that a call would not alias with some other memory
access, which implies that no instruction within that called function would
alias. By propagating the metadata to the inlined instructions, we preserve
that knowledge.
This should complete the enhancements requested in PR20500.
llvm-svn: 215676
members from all redefinitions of a class that have them, in case the special
member is defined in one module but only declared in another.
llvm-svn: 215675
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
No functional change. This will be used by the new FMA intrinsic lowering
code.
We can probably add NO_EXC here as well, I am just not too familiar with this
part of AVX512 yet. We can add that later.
llvm-svn: 215662
This change further evolves the base class AVX512_masking in order to make it
suitable for the masking variants of the FMA instructions.
Besides AVX512_masking there is now a new base class that instructions
including FMAs can use: AVX512_masking_3src. With three-source (destructive)
instructions one of the sources is already tied to the destination. This
difference from AVX512_masking is captured by this new class. The common bits
between _masking and _masking_3src are broken out into a new super class
called AVX512_masking_common.
As with valign, there is some corresponding restructuring of the underlying
format classes. The idea is the same we want to derive from two classes
essentially: one providing the format bits and another format-independent
multiclass supplying the various masking and non-masking instruction variants.
Existing fma tests in avx512-fma*.ll provide coverage here for the non-masking
variants. For masking, the next patches in the series will add intrinsics and
intrinsic tests.
For AVX512_masking_3src to work, the (ins ...) dag has to be passed *without*
the leading source operand that is tied to dst ($src1). This is necessary to
properly construct the (ins ...) for the different variants. For the record,
I did check that if $src is mistakenly included, you do get a fairly intuitive
error message from the tablegen backend.
Part of <rdar://problem/17688758>
llvm-svn: 215660
The documentation says that these fields should be generated when
we have proper process or target file. Current implementation did not
check for this. Eclipse seem to use list-thread-group command even
before setting the executable in which case current implementation
can return garbage data.
llvm-svn: 215658
When preserving noalias function parameter attributes by adding noalias
metadata in the inliner, we should do this for general function calls (not just
memory intrinsics). The logic is very similar to what already existed (except
that we want to add this metadata even for functions taking no relevant
parameters). This metadata can be used by ModRef queries in the caller after
inlining.
This addresses the first part of PR20500. Adding noalias metadata during
inlining is still turned off by default.
llvm-svn: 215657
Previously it was using run command which did not set the process
pointer in the sessionInfo. This commit also sends the proper
out-of-band data.
llvm-svn: 215656
to recover the performance after r214064.
Also sorts out the naming for PostOrderCFGView, ReversePostOrderCFGView,
BackwardDataflowWorklist and ForwardDataflowWorklist, to match the accepted
terminology.
Also unifies BackwardDataflowWorklist and ForwardDataflowWorklist to share
the "worklist for prioritization, post-order traversal for fallback" logic,
and to avoid repetitive sorting.
Also cleans up comments in the affected area.
llvm-svn: 215650
FileAction was previously a nested class in ProcessLaunchInfo.
This led to some unfortunate style consequences, such as requiring
the AddPosixSpawnFileAction() funciton to be defined in the Target
layer, instead of the more appropriate Host layer. This patch
makes FileAction its own independent class in the Target layer,
and then moves AddPosixSpawnFileAction() into Host as a result.
Differential Revision: http://reviews.llvm.org/D4877
llvm-svn: 215649
It fits better with LLVM's memory model to try to do this in the
backend. Specifically, narrowing wide loads in the backends should be
relatively straightforward and is generally valuable, whereas widening
loads tends to be very constrained.
Discussion here:
http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20140811/112581.html
This reverts commit r215614.
llvm-svn: 215648
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.
This patch is very similar to a fabs patch committed at r214892.
Differential Revision: http://reviews.llvm.org/D4852
llvm-svn: 215646
Summary:
This is done by removing some hardcoded registers like $at or expecting a single digit register to be selected.
Contains work done by Matheus Almeida.
Reviewers: matheusalmeida, dsanders
Reviewed By: dsanders
Subscribers: tomatabacu
Differential Revision: http://reviews.llvm.org/D4227
llvm-svn: 215640
lowering scheme.
Currently, this just directly bails to the fallback path of splitting
the 256-bit vector into two 128-bit vectors, operating there, and then
joining the results back together. While the results are far from
perfect, they are *shockingly* good for what we're doing here. I'll be
layering the rest of the functionality on top of this piece by piece and
updating tests as I go.
Note that 256-bit vectors in this mode are still somewhat WIP. While
I think the code paths that I'm adding here are clean and good-to-go,
there are still a lot of 128-bit assumptions that I'll need to stomp out
as I march through the functional spread here.
llvm-svn: 215637
Before:
template <class T>
T *f(T &c) // Problem here: no line break before f
{
return NULL;
}
After:
template <class T>
T *
f(T &c)
{
return NULL;
}
Patch by Marek Kurdej, thank you!
llvm-svn: 215633
Summary:
This pseudo-instruction allows the programmer to load an address from a symbolic expression into a register.
Patch by David Chisnall.
His work was sponsored by: DARPA, AFRL
I've made some minor changes to the original, such as improving the formatting and adding some comments, and I've also added a test case.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4808
llvm-svn: 215630
Summary:
getCanHaveModuleDir() is renamed to isModuleDirectiveAllowed(), and
setCanHaveModuleDir() is renamed to forbidModuleDirective() since it is only
ever given a false argument.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4885
llvm-svn: 215628
Store the llvm::Value pointers of the AliasSet instead of the AliasSet
itself.
We have to be careful about changed IR when the message is generated,
because the Value pointers might not exist anymore. This would render
the Diagnostic invalid. For now we just assert there.
Simply do not retreive a diagnostic message after the IR has changed
it's not valid information anyway.
llvm-svn: 215625