This patch fixes a bug [[ https://bugs.llvm.org/show_bug.cgi?id=46091 | 46091 ]]
Raw data for the `dense-element attribute` is written in little endian (LE) format.
This commit converts the format to big endian (BE) in ʻAttribute Parser` on the
BE machine. Also, when outputting on a BE machine, the BE format is converted
to LE in "AsmPrinter".
Differential Revision: https://reviews.llvm.org/D80695
This revision optimizes the parsing of hex strings by using the checked variant of llvm::fromHex, and adding a specialized method to Token for extracting hex strings. This leads a large decrease in compile time when parsing large hex constants (one example: 2.6 seconds -> 370 miliseconds)
Differential Revision: https://reviews.llvm.org/D90266
This patch is a follow-up on https://reviews.llvm.org/D81127
BF16 constants were represented as 64-bit floating point values due to the lack
of support for BF16 in APFloat. APFloat was recently extended to support
BF16 so this patch is fixing the BF16 constant representation to be 16-bit.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D81218
This revision allows for creating DenseElementsAttrs and accessing elements using std::complex<APInt>/std::complex<APFloat>. This allows for opaquely accessing and transforming complex values. This is used by the printer/parser to provide pretty printing for complex values. The form for complex values matches that of std::complex, i.e.:
```
// `(` element `,` element `)`
dense<(10,10)> : tensor<complex<i64>>
```
Differential Revision: https://reviews.llvm.org/D79296
This revision adds support for storing ComplexType elements inside of a DenseElementsAttr. We store complex objects as an array of two elements, matching the definition of std::complex. There is no current attribute storage for ComplexType, but DenseElementsAttr provides API for access/creation using std::complex<>. Given that the internal implementation of DenseElementsAttr is already fairly opaque, the only real complexity here is in the printing/parsing. This revision keeps it simple for now and always uses hex when printing complex elements. A followup will add prettier syntax for this.
Differential Revision: https://reviews.llvm.org/D79281
Summary:
Implemented a DenseStringsElements attr for handling arrays / tensors of strings. This includes the
necessary logic for parsing and printing the attribute from MLIR's text format.
To store the attribute we perform a single allocation that includes all wrapped string data tightly packed.
This means no padding characters and no null terminators (as they could be present in the string). This
buffer includes a first chunk of data that represents an array of StringRefs, that contain address pointers
into the string data, with the length of each string wrapped. At this point there is no Sparse representation
however strings are not typically represented sparsely.
Differential Revision: https://reviews.llvm.org/D78600
Summary: bfloat16 is stored internally as a double, so we can't direct use Type::getIntOrFloatBitWidth.
Differential Revision: https://reviews.llvm.org/D75133
Summary: DenseElementsAttr is used to store tensor data, which in some cases can become extremely large(100s of mb). In these cases it is much more efficient to format the data as a string of hex values instead.
Differential Revision: https://reviews.llvm.org/D74922