The arm condition codes for GE is N==V (and for LT is N!=V). If the source of
flags cannot set V (overflow), such as a cmp against #0, then we can use the
simpler PL and MI conditions that only check N. As these PL/MI conditions are
simpler than GE/LT, other passes like the peephole optimiser can have a better
time optimising away the redundant CMPs.
The exception is the VSEL instruction, which cannot take the PL code, so there
the transform favours GE.
Differential Revision: https://reviews.llvm.org/D64160
llvm-svn: 365117
Summary: For long shifts, the inlined version takes about 20 instructions on Thumb1. To avoid the code bloat, expand to __aeabi_ calls if target is Thumb1.
Reviewers: samparker
Reviewed By: samparker
Subscribers: samparker, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42401
llvm-svn: 323354
The benchmarking summarized in
http://lists.llvm.org/pipermail/llvm-dev/2017-May/113525.html showed
this is beneficial for a wide range of cores.
As is to be expected, quite a few small adaptations are needed to the
regressions tests, as the difference in scheduling results in:
- Quite a few small instruction schedule differences.
- A few changes in register allocation decisions caused by different
instruction schedules.
- A few changes in IfConversion decisions, due to a difference in
instruction schedule and/or the estimated cost of a branch mispredict.
llvm-svn: 306514
One half of the shifts obviously needed conditional selection based on whether
the shift amount is more than 32-bits, but leaving the other half as the
natural shift isn't acceptable either: it's undefined behaviour to shift a
32-bit value by more than 31.
llvm-svn: 287149