Rename member 'Size' to 'AllocatedSize' in order to provide a hint that the
allocated size may be different than the requested size. Comments are added to
clarify this point. Updated the InMemoryBuffer in FileOutputBuffer.cpp to track
the requested buffer size.
Patch by Machiel van Hooren. Thanks Machiel!
https://reviews.llvm.org/D61599
llvm-svn: 361195
This patch changes the return type of sys::Process::getPageSize to
Expected<unsigned> to account for the fact that the underlying syscalls used to
obtain the page size may fail (see below).
For clients who use the page size as an optimization only this patch adds a new
method, getPageSizeEstimate, which calls through to getPageSize but discards
any error returned and substitues a "reasonable" page size estimate estimate
instead. All existing LLVM clients are updated to call getPageSizeEstimate
rather than getPageSize.
On Unix, sys::Process::getPageSize is implemented in terms of getpagesize or
sysconf, depending on which macros are set. The sysconf call is documented to
return -1 on failure. On Darwin getpagesize is implemented in terms of sysconf
and may also fail (though the manpage documentation does not mention this).
These failures have been observed in practice when highly restrictive sandbox
permissions have been applied. Without this patch, the result is that
getPageSize returns -1, which wreaks havoc on any subsequent code that was
assuming a sane page size value.
<rdar://problem/41654857>
Reviewers: dblaikie, echristo
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59107
llvm-svn: 360221
Previously, MemoryBlock automatically extends a requested buffer size to a
multiple of page size because (I believe) doing it was thought to be harmless
and with that you could get more memory (on average 2KiB on 4KiB-page systems)
"for free".
That programming interface turned out to be error-prone. If you request N
bytes, you usually expect that a resulting object returns N for `size()`.
That's not the case for MemoryBlock.
Looks like there is only one place where we take the advantage of
allocating more memory than the requested size. So, with this patch, I
simply removed the automatic size expansion feature from MemoryBlock
and do it on the caller side when needed. MemoryBlock now always
returns a buffer whose size is equal to the requested size.
Differential Revision: https://reviews.llvm.org/D56941
llvm-svn: 351916
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This will let ORC JIT clients plug in custom logic for the mmap, munmap and
mprotect paths.
Reviewers: loladiro, dblaikie
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D39300
llvm-svn: 317770
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
In r255760, I optimized the SectionMemoryManager to make better use
of virtual memory on platforms where the allocation granularity was
bigger than the protection granularity. As part of this, fixing up
the free list became more complicated and was moved into
`applyMemoryGroupPermissions`. Unfortunately, I forgot to actually
remove the call that drops the free list for RO memory (I did
remove the corresponding one for RX memory), defeating the whole
optimization.
llvm-svn: 257293
Summary: On Windows, the allocation granularity can be significantly
larger than a page (64K), so with many small objects, just clearing
the FreeMem list rapidly leaks quite a bit of virtual memory space
(if not rss). Fix that by only removing those parts of the FreeMem
blocks that overlap pages for which we are applying memory permissions,
rather than dropping the FreeMem blocks entirely.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15202
llvm-svn: 255760
Summary:
Without this patch, the memory manager would call `mprotect` on every memory
region it ever allocated whenever it wanted to finalize memory (i.e. not just
the ones it just allocated). This caused terrible performance problems for
long running memory managers. In one particular compile heavy julia benchmark,
we were spending 50% of time in `mprotect` if running under MCJIT.
Fix this by splitting allocated memory blocks into those on which memory
permissions have been set and those on which they haven't and only running
`mprotect` on the latter.
Reviewers: lhames
Subscribers: reames, llvm-commits
Differential Revision: http://reviews.llvm.org/D13156
llvm-svn: 248981