Inspired by the object from the SLPVectorizer. This found a minor bug in the
debug loc restoration in the vectorizer where the location of a following
instruction was attached instead of the location from the original instruction.
llvm-svn: 191673
when it was actually a Constant*.
There are quite a few other casts to Instruction that might have the same problem,
but this is the only one I have a test case for.
llvm-svn: 191668
Currently foldSelectICmpAndOr asserts if the "or" involves a vector
containing several of the same power of two. We can easily avoid this by
only performing the fold on integer types, like foldSelectICmpAnd does.
Fixes <rdar://problem/15012516>
llvm-svn: 191552
We were previously using getFirstInsertionPt to insert PHI
instructions when vectorizing, but getFirstInsertionPt also skips past
landingpads, causing this to generate invalid IR.
We can avoid this issue by using getFirstNonPHI instead.
llvm-svn: 191526
Put them under a separate flag for experimentation. They are more likely to
interfere with loop vectorization which happens later in the pass pipeline.
llvm-svn: 191371
Revert 191122 - with extra checks we are allowed to vectorize math library
function calls.
Standard library indentifiers are reserved names so functions with external
linkage must not overrided them. However, functions with internal linkage can.
Therefore, we can vectorize calls to math library functions with a check for
external linkage and matching signature. This matches what we do during
SelectionDAG building.
llvm-svn: 191206
This makes using array_pod_sort significantly safer. The implementation relies
on function pointer casting but that should be safe as we're dealing with void*
here.
llvm-svn: 191175
SROA wants to convert any types of equivalent widths but it's not possible to
convert vectors of pointers to an integer scalar with a single cast. As a
workaround we add a bitcast to the corresponding int ptr type first. This type
of cast used to be an edge case but has become common with SLP vectorization.
Fixes PR17271.
llvm-svn: 191143
Reapply r191108 with a fix for a memory corruption error I introduced. Of
course, we can't reference the scalars that we replace by vectorizing and then
call their eraseFromParent method. I only 'needed' the scalars to get the
DebugLoc. Just store the DebugLoc before actually vectorizing instead. As a nice
side effect, this also simplifies the interface between BoUpSLP and the
HorizontalReduction class to returning a value pointer (the vectorized tree
root).
radar://14607682
llvm-svn: 191123
The problem of r191017 is that when GVN fabricate a val-number for a dead instruction (in order
to make following expr-PRE happy), it forget to fabricate a leader-table entry for it as well.
llvm-svn: 191118
Match reductions starting at binary operation feeding into a phi. The code
handles trees like
r += v1 + v2 + v3 ...
and
r += v1
r += v2
...
and
r *= v1 + v2 + ...
We currently only handle associative operations (add, fadd fast).
The code can now also handle reductions feeding into stores.
a[i] = v1 + v2 + v3 + ...
The code is currently disabled behind the flag "-slp-vectorize-hor". The cost
model for most architectures is not there yet.
I found one opportunity of a horizontal reduction feeding a phi in TSVC
(LoopRerolling-flt) and there are several opportunities where reductions feed
into stores.
radar://14607682
llvm-svn: 191108
The GEP pattern is what SCEV expander emits for "ugly geps". The latter is what
you get for pointer subtraction in C code. The rest of instcombine already
knows how to deal with that so just canonicalize on that.
llvm-svn: 191090
If "C1/X" were having multiple uses, the only benefit of this
transformation is to potentially shorten critical path. But it is at the
cost of instroducing additional div.
The additional div may or may not incur cost depending on how div is
implemented. If it is implemented using Newton–Raphson iteration, it dosen't
seem to incur any cost (FIXME). However, if the div blocks the entire
pipeline, that sounds to be pretty expensive. Let CodeGen to take care
this transformation.
This patch sees 6% on a benchmark.
rdar://15032743
llvm-svn: 191037
This is how it ignores the dead code:
1) When a dead branch target, say block B, is identified, all the
blocks dominated by B is dead as well.
2) The PHIs of those blocks in dominance-frontier(B) is updated such
that the operands corresponding to dead predecessors are replaced
by "UndefVal".
Using lattice's jargon, the "UndefVal" is the "Top" in essence.
Phi node like this "phi(v1 bb1, undef xx)" will be optimized into
"v1" if v1 is constant, or v1 is an instruction which dominate this
PHI node.
3) When analyzing the availability of a load L, all dead mem-ops which
L depends on disguise as a load which evaluate exactly same value as L.
4) The dead mem-ops will be materialized as "UndefVal" during code motion.
llvm-svn: 191017
Adds a flag to the MemorySanitizer pass that enables runtime rewriting of
indirect calls. This is part of MSanDR implementation and is needed to return
control to the DynamiRio-based helper tool on transition between instrumented
and non-instrumented modules. Disabled by default.
llvm-svn: 191006
XCore target: Add XCoreTargetTransformInfo
This is where getNumberOfRegisters() resides, which in turn returns the
number of vector registers (=0).
llvm-svn: 190936
Some of this code is no longer necessary since int<->ptr casts are no
longer occur as of r187444.
This also fixes handling vectors of pointers, and adds a bunch of new
testcases for vectors and address spaces.
llvm-svn: 190885
We can't insert an insertelement after an invoke. We would have to split a
critical edge. So when we see a phi node that uses an invoke we just give up.
radar://14990770
llvm-svn: 190871
other in memory.
The motivation was to get rid of truncate and shift right instructions that get
in the way of paired load or floating point load.
E.g.,
Consider the following example:
struct Complex {
float real;
float imm;
};
When accessing a complex, llvm was generating a 64-bits load and the imm field
was obtained by a trunc(lshr) sequence, resulting in poor code generation, at
least for x86.
The idea is to declare that two load instructions is the canonical form for
loading two arithmetic type, which are next to each other in memory.
Two scalar loads at a constant offset from each other are pretty
easy to detect for the sorts of passes that like to mess with loads.
<rdar://problem/14477220>
llvm-svn: 190870
If there are no legal integers, assume 1 byte.
This makes more sense than using the pointer size as
a guess for the maximum GPR width.
It is conceivable to want to use some 64-bit pointers
on a target where 64-bit integers aren't legal.
llvm-svn: 190817
We would have to compute the pre increment value, either by computing it on
every loop iteration or by splitting the edge out of the loop and inserting a
computation for it there.
For now, just give up vectorizing such loops.
Fixes PR17179.
llvm-svn: 190790
This pass was based on the previous (essentially unused) profiling
infrastructure and the assumption that by ordering the basic blocks at
the IR level in a particular way, the correct layout would happen in the
end. This sometimes worked, and mostly didn't. It also was a really
naive implementation of the classical paper that dates from when branch
predictors were primarily directional and when loop structure wasn't
commonly available. It also didn't factor into the equation
non-fallthrough branches and other machine level details.
Anyways, for all of these reasons and more, I wrote
MachineBlockPlacement, which completely supercedes this pass. It both
uses modern profile information infrastructure, and actually works. =]
llvm-svn: 190748
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 190542
LLVM IR doesn't currently allow atomic bool load/store operations, and the
transformation is dubious anyway because it isn't profitable on all platforms.
PR17163.
llvm-svn: 190357
Several architectures use the same instruction to perform both a comparison and
a subtract. The instruction selection framework does not allow to consider
different basic blocks to expose such fusion opportunities.
Therefore, these instructions are “merged” by CSE at MI IR level.
To increase the likelihood of CSE to apply in such situation, we reorder the
operands of the comparison, when they have the same complexity, so that they
matches the order of the most frequent subtract.
E.g.,
icmp A, B
...
sub B, A
<rdar://problem/14514580>
llvm-svn: 190352
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
instead of having its own implementation.
The implementation of isTBAAVtableAccess is in TypeBasedAliasAnalysis.cpp
since it is related to the format of TBAA metadata.
The path for struct-path tbaa will be exercised by
test/Instrumentation/ThreadSanitizer/read_from_global.ll, vptr_read.ll, and
vptr_update.ll when struct-path tbaa is on by default.
llvm-svn: 190216
This reverts commit r189886.
I found a corner case where this optimization is not valid:
Say we have a "linkonce_odr unnamed_addr" in two translation units:
* In TU 1 this optimization kicks in and makes it hidden.
* In TU 2 it gets const merged with a constant that is *not* unnamed_addr,
resulting in a non unnamed_addr constant with default visibility.
* The static linker rules for combining visibility them produce a hidden
symbol, which is incorrect from the point of view of the non unnamed_addr
constant.
The one place we can do this is when we know that the symbol is not used from
another TU in the same shared object, i.e., during LTO. I will move it there.
llvm-svn: 189954
"(icmp op i8 A, B)" is equivalent to "(icmp op i8 (A & 0xff), B)" as a
degenerate case. Allowing this as a "masked" comparison when analysing "(icmp)
&/| (icmp)" allows us to combine them in more cases.
rdar://problem/7625728
llvm-svn: 189931
Even in cases which aren't universally optimisable like "(A & B) != 0 && (A &
C) != 0", the masks can make one of the comparisons completely redundant. In
this case, since we've gone to the effort of spotting masked comparisons we
should combine them.
rdar://problem/7625728
llvm-svn: 189930
Original message:
If a constant or a function has linkonce_odr linkage and unnamed_addr, mark
hidden. Being linkonce_odr guarantees that it is available in every dso that
needs it. Being a constant/function with unnamed_addr guarantees that the
copies don't have to be merged.
llvm-svn: 189886
The reason that I am turning off this optimization is that there is an
additional case where a block can escape that has come up. Specifically, this
occurs when a block is used in a scope outside of its current scope.
This can cause a captured retainable object pointer whose life is preserved by
the objc_retainBlock to be deallocated before the block is invoked.
An example of the code needed to trigger the bug is:
----
\#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
void (^somethingToDoLater)();
{
NSObject *obj = [NSObject new];
somethingToDoLater = ^{
[obj self]; // Crashes here
};
}
NSLog(@"test.");
somethingToDoLater();
return 0;
}
----
In the next commit, I remove all the dead code that results from this.
Once I put in the fixing commit I will bring back the tests that I deleted in
this commit.
rdar://14802782.
rdar://14868830.
llvm-svn: 189869
This patch changes the default setting for the LateVectorization flag that controls where the loop-vectorizer is ran.
Perf gains:
SingleSource/Benchmarks/Shootout/matrix -37.33%
MultiSource/Benchmarks/PAQ8p/paq8p -22.83%
SingleSource/Benchmarks/Linpack/linpack-pc -16.22%
SingleSource/Benchmarks/Shootout-C++/ary3 -15.16%
MultiSource/Benchmarks/TSVC/NodeSplitting-flt/NodeSplitting-flt -10.34%
MultiSource/Benchmarks/TSVC/NodeSplitting-dbl/NodeSplitting-dbl -7.12%
Regressions:
SingleSource/Benchmarks/Misc/lowercase 15.10%
MultiSource/Benchmarks/TSVC/Equivalencing-flt/Equivalencing-flt 13.18%
SingleSource/Benchmarks/Shootout-C++/matrix 8.27%
SingleSource/Benchmarks/CoyoteBench/lpbench 7.30%
llvm-svn: 189858
1) If the width of vectorization list candidate is bigger than vector reg width, we will break it down to fit the vector reg.
2) We do not vectorize the width which is not power of two.
The performance result shows it will help some spec benchmarks. mesa improved 6.97% and ammp improved 1.54%.
llvm-svn: 189830
Select condition shadow was being ignored resulting in false negatives.
This change OR-s sign-extended condition shadow into the result shadow.
llvm-svn: 189785
The existing code missed some edge cases when e.g. we're going to emit sqrtf but
only the availability of sqrt was checked. This happens on odd platforms like
windows.
llvm-svn: 189724
PR17026. Also avoid undefined shifts and shift amounts larger than 64 bits
(those are always undef because we can't represent integer types that large).
llvm-svn: 189672
Revert unintentional commit (of an unreviewed change).
Original commit message:
Add getUnrollingPreferences to TTI
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189566
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189565
1. They are a kind of cannonicalization.
2. The performance measurements show that it is better to keep them in.
There should be no functional change if you are not enabling the LateVectorization mode.
llvm-svn: 189539
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).
In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).
llvm-svn: 189499
This patch merges LoopVectorize of InnerLoopVectorizer and InnerLoopUnroller by adding checks for VF=1. This helps in erasing the Unroller code that is almost identical to the InnerLoopVectorizer code.
llvm-svn: 189391
The builder inserts from before the insert point,
not after, so this would insert before the last
instruction in the bundle instead of after it.
I'm not sure if this can actually be a problem
with any of the current insertions.
llvm-svn: 189285
This patch enables unrolling of loops when vectorization is legal but not profitable.
We add a new class InnerLoopUnroller, that extends InnerLoopVectorizer and replaces some of the vector-specific logic with scalars.
This patch does not introduce any runtime regressions and improves the following workloads:
SingleSource/Benchmarks/Shootout/matrix -22.64%
SingleSource/Benchmarks/Shootout-C++/matrix -13.06%
External/SPEC/CINT2006/464_h264ref/464_h264ref -3.99%
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding -1.95%
llvm-svn: 189281
The code was erroneously reading overflow area shadow from the TLS slot,
bypassing the local copy. Reading shadow directly from TLS is wrong, because
it can be overwritten by a nested vararg call, if that happens before va_start.
llvm-svn: 189104
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097
The current version of StripDeadDebugInfo became stale and no longer actually
worked since it was expecting an older version of debug info.
This patch updates it to use DebugInfoFinder and the modern DebugInfo classes as
much as possible to make it more redundent to such changes. Additionally, the
only place where that was avoided (the code where we replace the old sets with
the new), I call verify on the DIContextUnit implying that if the format changes
and my live set changes no longer make sense an assert will be hit. In order to
ensure that that occurs I have included a test case.
The actual stripping of the dead debug info follows the same strategy as was
used before in this class: find the live set and replace the old set in the
given compile unit (which may contain dead global variables/functions) with the
new live one.
llvm-svn: 189078
DFSan changes the ABI of each function in the module. This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior. A simple way
of statically detecting instances of this problem is to prepend the prefix
"dfs$" to the name of each instrumented-ABI function.
This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.
Differential Revision: http://llvm-reviews.chandlerc.com/D1373
llvm-svn: 189052
using GEPs. Previously, it used a number of different heuristics for
analyzing the GEPs. Several of these were conservatively correct, but
failed to fall back to SCEV even when SCEV might have given a reasonable
answer. One was simply incorrect in how it was formulated.
There was good code already to recursively evaluate the constant offsets
in GEPs, look through pointer casts, etc. I gathered this into a form
code like the SLP code can use in a previous commit, which allows all of
this code to become quite simple.
There is some performance (compile time) concern here at first glance as
we're directly attempting to walk both pointers constant GEP chains.
However, a couple of thoughts:
1) The very common cases where there is a dynamic pointer, and a second
pointer at a constant offset (usually a stride) from it, this code
will actually not do any unnecessary work.
2) InstCombine and other passes work very hard to collapse constant
GEPs, so it will be rare that we iterate here for a long time.
That said, if there remain performance problems here, there are some
obvious things that can improve the situation immensely. Doing
a vectorizer-pass-wide memoizer for each individual layer of pointer
values, their base values, and the constant offset is likely to be able
to completely remove redundant work and strictly limit the scaling of
the work to scrape these GEPs. Since this optimization was not done on
the prior version (which would still benefit from it), I've not done it
here. But if folks have benchmarks that slow down it should be straight
forward for them to add.
I've added a test case, but I'm not really confident of the amount of
testing done for different access patterns, strides, and pointer
manipulation.
llvm-svn: 189007
There are situations which can affect the correctness (or at least expectation)
of the gcov output. For instance, if a call to __gcov_flush() occurs within a
block before the execution count is registered and then the program aborts in
some way, then that block will not be marked as executed. This is not normally
what the user expects.
If we move the code that's registering when a block is executed to the
beginning, we can catch these types of situations.
PR16893
llvm-svn: 188849
Update iterator when the SLP vectorizer changes the instructions in the basic
block by restarting the traversal of the basic block.
Patch by Yi Jiang!
Fixes PR 16899.
llvm-svn: 188832
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
llvm-svn: 188728
When both constants are positive or both constants are negative,
InstCombine already simplifies comparisons like this, but when
it's exactly zero and -1, the operand sorting ends up reversed
and the pattern fails to match. Handle that special case.
Follow up for rdar://14689217
llvm-svn: 188512
Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
llvm-svn: 188472
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
llvm-svn: 188402
extremely subtle miscompilations (such as a load getting replaced with
the value stored *below* the load within a basic block) related to
promoting an alloca to an SSA value, there is the dim possibility that
you hit this. Please let me know if you won this unfortunate lottery.
The first half of mem2reg's core logic (as it is used both in the
standalone mem2reg pass and in SROA) builds up a mapping from
'Instruction *' to the index of that instruction within its basic block.
This allows quickly establishing which store dominate a particular load
even for large basic blocks. We cache this information throughout the
run of mem2reg over a function in order to amortize the cost of
computing it.
This is not in and of itself a strange pattern in LLVM. However, it
introduces a very important constraint: absolutely no instruction can be
deleted from the program without updating the mapping. Otherwise a newly
allocated instruction might get the same pointer address, and then end
up with a wrong index. Yes, LLVM routinely suffers from a *single
threaded* variant of the ABA problem. Most places in LLVM don't find
avoiding this an imposition because they don't both delete and create
new instructions iteratively, but mem2reg *loves* to do this... All the
time. Fortunately, the mem2reg code was really careful about updating
this cache to handle this eventuallity... except when it comes to the
debug declare intrinsic. Oops. The fix is to invalidate that pointer in
the cache when we delete it, the same as we do when deleting alloca
instructions and other instructions.
I've also caused the same bug in new code while working on a fix to
PR16867, so this seems to be a really unfortunate pattern. Hopefully in
subsequent patches the deletion of dead instructions can be consolidated
sufficiently to make it less likely that we'll see future occurences of
this bug.
Sorry for not having a test case, but I have literally no idea how to
reliably trigger this kind of thing. It may be single-threaded, but it
remains an ABA problem. It would require a really amazing number of
stars to align.
llvm-svn: 188367
Use the pointer size if datalayout is available.
Use i64 if it's not, which is consistent with what other
places do when the pointer size is unknown.
The test doesn't really test this in a useful way
since it will be transformed to that later anyway,
but this now tests it for non-zero arrays and when
datalayout isn't available. The cases in
visitGetElementPtrInst should save an extra re-visit to
the newly created GEP since it won't need to cleanup after
itself.
llvm-svn: 188339
When computing the use set of a store, we need to add the store to the write
set prior to iterating over later instructions. Otherwise, if there is a later
aliasing load of that store, that load will not be tagged as a use, and bad
things will happen.
trackUsesOfI still adds later dependent stores of an instruction to that
instruction's write set, but it never sees the original instruction, and so
when tracking uses of a store, the store must be added to the write set by the
caller.
Fixes PR16834.
llvm-svn: 188329
However, opt -O2 doesn't run mem2reg directly so nobody noticed until r188146
when SROA started sending more things directly down the PromoteMemToReg path.
In order to revert r187191, I also revert dependent revisions r187296, r187322
and r188146. Fixes PR16867. Does not add the testcases from that PR, but both
of them should get added for both mem2reg and sroa when this revert gets
unreverted.
llvm-svn: 188327
Do not generate new vector values for the same entries because we know that the incoming values
from the same block must be identical.
llvm-svn: 188185
Summary:
Doing work in constructors is bad: this change suggests to
call SpecialCaseList::create(Path, Error) instead of
"new SpecialCaseList(Path)". Currently the latter may crash with
report_fatal_error, which is undesirable - sometimes we want to report
the error to user gracefully - for example, if he provides an incorrect
file as an argument of Clang's -fsanitize-blacklist flag.
Reviewers: pcc
Reviewed By: pcc
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1327
llvm-svn: 188156
These functions used to assume that the lsb of an integer corresponds
to vector element 0, whereas for big-endian it's the other way around:
the msb is in the first element and the lsb is in the last element.
Fixes MultiSource/Benchmarks/mediabench/gsm/toast for z.
llvm-svn: 188155
SROA-based analysis has enough information. This should work now that
both mem2reg *and* the SSAUpdater-based AllocaPromoter have been updated
to be able to promote the types of allocas that the SROA analysis
detects.
I've included tests for the AllocaPromoter that were only possible to
write once we fast-tracked promotable allocas without rewriting them.
This includes a test both for r187347 and r188145.
Original commit log for r187323:
"""
Now that mem2reg understands how to cope with a slightly wider set of uses of
an alloca, we can pre-compute promotability while analyzing an alloca for
splitting in SROA. That lets us short-circuit the common case of a bunch of
trivially promotable allocas. This cuts 20% to 30% off the run time of SROA for
typical frontend-generated IR sequneces I'm seeing. It gets the new SROA to
within 20% of ScalarRepl for such code. My current benchmark for these numbers
is PR15412, but it fits the general pattern of IR emitted by Clang so it should
be widely applicable.
"""
llvm-svn: 188146
the more general set of patterns that are now handled by mem2reg and that we
can detect quickly while doing SROA's initial analysis. Notably, this allows it
to promote through no-op bitcast and GEP sequences. A core part of the
SSAUpdater approach is the ability to test whether a particular instruction is
part of the set being promoted. Testing this becomes significantly more complex
in the world where the operand to every load and store isn't the alloca itself.
I ended up using the approach of walking up the def-chain until we find the
alloca. I benchmarked this against keeping a set of pointer operands and
keeping a set of the loads and stores we care about, and this one seemed faster
although the difference was very small.
No test case yet because currently the rewriting always "fixes" the inputs to
not require this. The next patch which re-enables early promotion of easy cases
in SROA will include a test case that specifically exercises this aspect of the
alloca promoter.
llvm-svn: 188145
our visiting datastructures in the AllocaPromoter/SSAUpdater path of
SROA. Also shift the order if clears around to be more consistent.
No functionality changed here, this is just a cleanup.
llvm-svn: 188144
It is breaking builbots with libgmalloc enabled on Mac OS X.
$ cd llvm ; mkdir release ; cd release
$ ../configure --enable-optimized —prefix=$PWD/install
$ make
$ make check
$ Release+Asserts/bin/llvm-lit -v --param use_gmalloc=1 --param \
gmalloc_path=/usr/lib/libgmalloc.dylib \
../test/Instrumentation/DataFlowSanitizer/args-unreachable-bb.ll
llvm-svn: 188142
I fixed the aforementioned problems that came up on some of the linux boxes.
Major thanks to Nick Lewycky for his help debugging!
rdar://14590914
llvm-svn: 188122
This moves removeUnreachableBlocksFromFn from SimplifyCFGPass.cpp
to Utils/Local.cpp and uses it to replace the implementation of
llvm::removeUnreachableBlocks, which appears to do a strict subset
of what removeUnreachableBlocksFromFn does.
Differential Revision: http://llvm-reviews.chandlerc.com/D1334
llvm-svn: 188119
This reverts commit r187941.
The commit was passing on my os x box, but it is failing on some non-osx
platforms. I do not have time to look into it now, so I am reverting and will
recommit after I figure this out.
llvm-svn: 187946
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.
For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).
This will be used by the PowerPC backend in a follow-up commit.
llvm-svn: 187926
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D965
llvm-svn: 187923
The globals being generated here were given the 'private' linkage type. However,
this caused them to end up in different sections with the wrong prefix. E.g.,
they would be in the __TEXT,__const section with an 'L' prefix instead of an 'l'
(lowercase ell) prefix.
The problem is that the linker will eat a literal label with 'L'. If a weak
symbol is then placed into the __TEXT,__const section near that literal, then it
cannot distinguish between the literal and the weak symbol.
Part of the problems here was introduced because the address sanitizer converted
some C strings into constant initializers with trailing nuls. (Thus putting them
in the __const section with the wrong prefix.) The others were variables that
the address sanitizer created but simply had the wrong linkage type.
llvm-svn: 187827
Our internal regex implementation does not cope with large numbers
of anchors very efficiently. Given a ~3600-entry special case list,
regex compilation can take on the order of seconds. This patch solves
the problem for the special case of patterns matching literal global
names (i.e. patterns with no regex metacharacters). Rather than
forming regexes from literal global name patterns, add them to
a StringSet which is checked before matching against the regex.
This reduces regex compilation time by an order of roughly thousands
when reading the aforementioned special case list, according to a
completely unscientific study.
No test cases. I figure that any new tests for this code should
check that regex metacharacters are properly recognised. However,
I could not find any documentation which documents the fact that the
syntax of global names in special case lists is based on regexes.
The extent to which regex syntax is supported in special case lists
should probably be decided on/documented before writing tests.
Differential Revision: http://llvm-reviews.chandlerc.com/D1150
llvm-svn: 187732
It will now only convert the arguments / return value and call
the underlying function if the types are able to be bitcasted.
This avoids using fp<->int conversions that would occur before.
llvm-svn: 187444