Summary:
I'm working on a clang-tidy check, much like existing [[ http://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]],
to detect when an exception might escape out of an OpenMP construct it isn't supposed to escape from.
For that i will be using the `nothrow` bit of `CapturedDecl`s.
While that bit is already correctly set for some constructs, e.g. `#pragma omp parallel`: https://godbolt.org/z/2La7pv
it isn't set for the `#pragma omp sections`, or `#pragma omp section`: https://godbolt.org/z/qZ-EbP
If i'm reading [[ https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf | `OpenMP Application Programming Interface Version 5.0 November 2018` ]] correctly,
they should be, as per `2.8.1 sections Construct`, starting with page 86:
* The sections construct is a non-iterative worksharing construct that contains a set of **structured blocks**
that are to be distributed among and executed by the threads in a team. Each **structured block** is executed
once by one of the threads in the team in the context of its implicit task.
* The syntax of the sections construct is as follows:
#pragma omp sections [clause[ [,] clause] ... ] new-line
{
[#pragma omp section new-line]
**structured-block**
...
* Description
Each **structured block** in the sections construct is preceded by a section directive except
possibly **the first block**, for which a preceding section directive is optional.
* Restrictions
• The code enclosed in a sections construct must be a **structured block**.
* A throw executed inside a sections region must cause execution to resume within the same
section of the sections region, and the same thread that threw the exception must catch it.
Reviewers: ABataev, #openmp
Reviewed By: ABataev
Subscribers: guansong, openmp-commits, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D57585
llvm-svn: 352882
Summary:
Apparently `LLVMTestingSupport` must be built before `llvm-config` can be asked for it. Symptom with `LLVM_INCLUDE_TESTS=ON` is:
```
$ ./path/to/llvm-build/bin/llvm-config --ldflags --libs testingsupport
-L/path/to/llvm-build/lib -Wl,-search_paths_first -Wl,-headerpad_max_install_names
llvm-config: error: component libraries and shared library
llvm-config: error: missing: /path/to/llvm-build/lib/libLLVMTestingSupport.a
```
With `LLVMTestingSupport` as dependency of `compiler-rt-configure` we get the expected behavior:
```
$ ./path/to/llvm-build/bin/llvm-config --ldflags --libs testingsupport
-L/path/to/llvm-build/lib -Wl,-search_paths_first -Wl,-headerpad_max_install_names
-lLLVMTestingSupport -lLLVMSupport -lLLVMDemangle
```
Reviewers: ab, beanz
Subscribers: dberris, mgorny, erik.pilkington, llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D57521
llvm-svn: 352881
Summary:
Some tidy checks have too many hits in the codebase, making it hard to spot
other results from clang-tidy, therefore rendering the tool less useful.
Two checks were disabled:
- misc-non-private-member-variable-in-classes in the whole LLVM monorepo,
it is very common to have those in LLVM and the style guide does not forbid
them.
- readability-identifier-naming in the clang subtree. There are thousands of
violations in 'Sema.h' alone.
Before the change, 'Sema.h' had >1000 tidy warnings, after the change the number
dropped to 3 warnings (unterminated namespace comments).
Reviewers: alexfh, hokein
Reviewed By: hokein
Subscribers: llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D57573
llvm-svn: 352862
InlineCost's isInlineViable() is changed to return InlineResult
instead of bool. This provides messages for failure reasons and
allows to get more specific messages for cases where callsites
are not viable for inlining.
Reviewed By: xbolva00, anemet
Differential Revision: https://reviews.llvm.org/D57089
llvm-svn: 352849
Token pasted by the preprocessor (through ##) have a Spelling pointing to scratch buffer.
As a result they are not recognized at system macro, even though the pasting happened in
a system macro. Fix that by looking into the parent macro if the original lookup finds a
scratch buffer.
Differential Revision: https://reviews.llvm.org/D55782
This effectively fixes https://bugs.llvm.org/show_bug.cgi?id=35268,
llvm-svn: 352838
Summary:
Given the following test program:
```
class C {
public:
int A(int a, int& b);
};
int C::A(const int a, int b) {
return a * b;
}
```
Clang would produce an error message that correctly diagnosed the
redeclaration of `C::A` to not match the original declaration (the
parameters to the two declarations do not match -- the original takes an
`int &` as its 2nd parameter, but the redeclaration takes an `int`). However,
it also produced a note diagnostic that inaccurately pointed to the
first parameter, claiming that `const int` in the redeclaration did not
match the unqualified `int` in the original. The diagnostic is
misleading because it has nothing to do with why the program does not
compile.
The logic for checking for a function overload, in
`Sema::FunctionParamTypesAreEqual`, discards cv-qualifiers before
checking whether the types are equal. Do the same when producing the
overload diagnostic.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cpplearner, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57032
llvm-svn: 352831
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every unreachable instruction. However, the
optimizer will remove code after calls to functions marked with
noreturn. To avoid this UBSan removes noreturn from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
_asan_handle_no_return before noreturn functions. This is important for
functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* longjmp (longjmp itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the noreturn attributes are missing and ASan cannot
unpoison the stack, so it has false positives when stack unwinding is
used.
Changes:
Clang-CodeGen now directly insert calls to `__asan_handle_no_return`
when a call to a noreturn function is encountered and both
UBsan-unreachable and ASan are enabled. This allows UBSan to continue
removing the noreturn attribute from functions without any changes to
the ASan pass.
Previously generated code:
```
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
Generated code (for now):
```
call void @__asan_handle_no_return
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
rdar://problem/40723397
Reviewers: delcypher, eugenis, vsk
Differential Revision: https://reviews.llvm.org/D57278
> llvm-svn: 352690
llvm-svn: 352829
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
Having an incorrect type for a cast causes the checker to incorrectly
dismiss the operation under ARC, leading to a false positive
use-after-release on the test.
rdar://47709885
Differential Revision: https://reviews.llvm.org/D57557
llvm-svn: 352824
- fixes the test on macOS with LLVM_ENABLE_PIC=OFF
- together with D57343, gets the test to pass on Windows
- makes it run everywhere (it seems to just pass on Linux)
The main change is to pull out the resource directory computation into a
function shared by all 3 places that do it. In CIndexer.cpp, this now works no
matter if libclang is in lib/ or bin/ or statically linked to a binary in bin/.
Differential Revision: https://reviews.llvm.org/D57345
llvm-svn: 352803
rC352620 caused regressions because it copied floating point format from
aux target.
floating point format decides whether extended long double is supported.
It is x86_fp80 on x86 but IEEE double on amdgcn.
Document usage of long doubel type in HIP programming guide
https://github.com/ROCm-Developer-Tools/HIP/pull/890
Differential Revision: https://reviews.llvm.org/D57527
llvm-svn: 352801
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
Instead of calling CUDA runtime to arrange function arguments,
the new API constructs arguments in a local array and the kernels
are launched with __cudaLaunchKernel().
The old API has been deprecated and is expected to go away
in the next CUDA release.
Differential Revision: https://reviews.llvm.org/D57488
llvm-svn: 352799
..and use it to control that parts of CUDA compilation
that depend on the specific version of CUDA SDK.
This patch has a placeholder for a 'new launch API' support
which is in a separate patch. The list will be further
extended in the upcoming patch to support CUDA-10.1.
Differential Revision: https://reviews.llvm.org/D57487
llvm-svn: 352798
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
Preferred types are used by code completion for ranking. This commit
considerably increases the number of points in code where those types
are propagated.
In order to avoid complicating signatures of Parser's methods, a
preferred type is kept as a member variable in the parser and updated
during parsing.
Differential revision: https://reviews.llvm.org/D56723
llvm-svn: 352788
Summary:
As PR17480 describes, clang does not support the used attribute
for member functions of class templates. This means that if the member
function is not used, its definition is never instantiated. This patch
changes clang to emit the definition if it has the used attribute.
Test Plan: Added a testcase
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D56928
llvm-svn: 352740
Previously, there were two different scripts for generating VCS headers:
one used by LLVM and one used by Clang. They were both similar, but
different. They were both broken in their own ways, for example the one
used by Clang didn't properly handle monorepo resulting in an incorrect
version information reported by Clang.
This change unifies two the scripts by introducing a new script that's
used from both LLVM and Clang, ensures that the new script supports both
monorepo and standalone SVN and Git setups, and removes the old scripts.
Differential Revision: https://reviews.llvm.org/D57063
llvm-svn: 352729
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every unreachable instruction. However, the
optimizer will remove code after calls to functions marked with
noreturn. To avoid this UBSan removes noreturn from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
_asan_handle_no_return before noreturn functions. This is important for
functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* longjmp (longjmp itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the noreturn attributes are missing and ASan cannot
unpoison the stack, so it has false positives when stack unwinding is
used.
Changes:
Clang-CodeGen now directly insert calls to `__asan_handle_no_return`
when a call to a noreturn function is encountered and both
UBsan-unreachable and ASan are enabled. This allows UBSan to continue
removing the noreturn attribute from functions without any changes to
the ASan pass.
Previously generated code:
```
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
Generated code (for now):
```
call void @__asan_handle_no_return
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
rdar://problem/40723397
Reviewers: delcypher, eugenis, vsk
Differential Revision: https://reviews.llvm.org/D57278
llvm-svn: 352690
objc_alloc and objc_allocWithZone may throw exceptions if the
underlying method does. If we're in a @try block, then make sure we
emit an invoke instead of a call.
rdar://47610407
Differential revision: https://reviews.llvm.org/D57476
llvm-svn: 352687
required.
Function __kmpc_push_target_tripcount should be emitted only if the
offloading entry is going to be emitted (for use in tgt_target...
functions). Otherwise, it should not be emitted.
llvm-svn: 352669
This builtin has the same UI as __builtin_object_size, but has the
potential to be evaluated dynamically. It is meant to be used as a
drop-in replacement for libraries that use __builtin_object_size when
a dynamic checking mode is enabled. For instance,
__builtin_object_size fails to provide any extra checking in the
following function:
void f(size_t alloc) {
char* p = malloc(alloc);
strcpy(p, "foobar"); // expands to __builtin___strcpy_chk(p, "foobar", __builtin_object_size(p, 0))
}
This is an overflow if alloc < 7, but because LLVM can't fold the
object size intrinsic statically, it folds __builtin_object_size to
-1. With __builtin_dynamic_object_size, alloc is passed through to
__builtin___strcpy_chk.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56760
llvm-svn: 352665
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
Summary:
Was trying to understand how complicated it would be to write
a clang-tidy `openmp-exception-escape`-ish check once D57100 lands.
Just so it happens, all the data is already there,
it is just conveniently omitted from AST dump.
Reviewers: aaron.ballman, steveire, ABataev
Reviewed By: ABataev
Subscribers: ABataev, guansong, cfe-commits
Tags: #openmp, #clang
Differential Revision: https://reviews.llvm.org/D57452
llvm-svn: 352631
In 64 bit MSVC environment size_t is defined as unsigned long long.
In single source language like HIP, data layout should be consistent
in device and host compilation, therefore copy data layout controlling
fields from Aux target for AMDGPU target.
Differential Revision: https://reviews.llvm.org/D56318
llvm-svn: 352620