Commit Graph

795 Commits

Author SHA1 Message Date
Stephen Neuendorffer b0dce6b37f Revert "[RFC] Factor out repetitive cmake patterns for llvm-style projects"
This reverts commit e9b87f43bd.

There are issues with macros generating macros without an obvious simple fix
so I'm going to revert this and try something different.
2020-10-04 15:17:34 -07:00
Stephen Neuendorffer e9b87f43bd [RFC] Factor out repetitive cmake patterns for llvm-style projects
New projects (particularly out of tree) have a tendency to hijack the existing
llvm configuration options and build targets (add_llvm_library,
add_llvm_tool).  This can lead to some confusion.

1) When querying a configuration variable, do we care about how LLVM was
configured, or how these options were configured for the out of tree project?
2) LLVM has lots of defaults, which are easy to miss
(e.g. LLVM_BUILD_TOOLS=ON).  These options all need to be duplicated in the
CMakeLists.txt for the project.

In addition, with LLVM Incubators coming online, we need better ways for these
incubators to do things the "LLVM way" without alot of futzing.  Ideally, this
would happen in a way that eases importing into the LLVM monorepo when
projects mature.

This patch creates some generic infrastructure in llvm/cmake/modules and
refactors MLIR to use this infrastructure.  This should expand to include
add_xxx_library, which is by far the most complicated bit of building a
project correctly, since it has to deal with lots of shared library
configuration bits.  (MLIR currently hijacks the LLVM infrastructure for
building libMLIR.so, so this needs to get refactored anyway.)

Differential Revision: https://reviews.llvm.org/D85140
2020-10-03 17:12:35 -07:00
Jacques Pienaar 9b851527d5 Add indented raw_ostream class
Class simplifies keeping track of the indentation while emitting. For every new line the current indentation is simply prefixed (if not at start of line, then it just emits as normal). Add a simple Region helper that makes it easy to have the C++ scope match the emitted scope.

Use this in op doc generator and rewrite generator.

This reverts revert commit be185b6a73 addresses shared lib failure by fixing up cmake files.

Differential Revision: https://reviews.llvm.org/D84107
2020-10-03 15:17:38 -07:00
Jacques Pienaar be185b6a73 Revert "Add indented raw_ostream class"
This reverts commit 78530ce653.

Fails on shared_lib build.
2020-10-03 09:41:35 -07:00
Jacques Pienaar 78530ce653 Add indented raw_ostream class
Class simplifies keeping track of the indentation while emitting. For every new line the current indentation is simply prefixed (if not at start of line, then it just emits as normal). Add a simple Region helper that makes it easy to have the C++ scope match the emitted scope.

Use this in op doc generator and rewrite generator.

Differential Revision: https://reviews.llvm.org/D84107
2020-10-03 08:53:43 -07:00
MaheshRavishankar c694588fc5 [mlir][Linalg] Add pattern to tile and fuse Linalg operations on buffers.
The pattern is structured similar to other patterns like
LinalgTilingPattern. The fusion patterns takes options that allows you
to fuse with producers of multiple operands at once.
- The pattern fuses only at the level that is known to be legal, i.e
  if a reduction loop in the consumer is tiled, then fusion should
  happen "before" this loop. Some refactoring of the fusion code is
  needed to fuse only where it is legal.
- Since the fusion on buffers uses the LinalgDependenceGraph that is
  not mutable in place the fusion pattern keeps the original
  operations in the IR, but are tagged with a marker that can be later
  used to find the original operations.

This change also fixes an issue with tiling and
distribution/interchange where if the tile size of a loop were 0 it
wasnt account for in these.

Differential Revision: https://reviews.llvm.org/D88435
2020-09-30 14:56:58 -07:00
John Demme 76419525fb Common code preparation for tblgen-types patch
Cleanup and add methods which https://reviews.llvm.org/D86904 requires. Breaking up to lower review load.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D88267
2020-09-26 02:47:48 +00:00
Rahul Joshi 2d128b04d9 [NFC] Fix build warnings 2020-09-25 09:35:41 -07:00
Mike Urbach d14cfe1034 [mlir][OpFormatGen] Update "custom" directives for attributes.
This tweaks the generated code for parsing attributes with a custom
directive to call `addAttribute` on the `OperationState` directly,
and adds a newline after this call. Previously, the generated code
would call `addAttribute` on the `OperationState` field `attributes`,
which has no such method and fails to compile. Furthermore, the lack
of newline would generate code with incorrectly formatted single line
`if` statements. Added tests for parsing and printing attributes with
a custom directive.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D87860
2020-09-23 18:33:39 +00:00
Rahul Joshi a6ae695017 [MLIR][NFC] Adopt use of BlockRange in place of ArrayRef<Block *>
- Use BlockRange in ODS generated builders as well as other places throughout the code

Differential Revision: https://reviews.llvm.org/D87955
2020-09-23 09:21:54 -07:00
Rahul Joshi 9744606614 [MLIR] Change default builders generated by TableGen to use TypeRange for result types
- Change the default builders to use TypeRange instead of ArrayRef<Type>
- Custom builders defined in LinalgStructuredOps now conflict with the default
  separate param ones, but the default collective params one is still needed. Resolve
  this by replicating the collective param builder as a custom builder and skipping
  the generation of default builders for these ops.

Differential Revision: https://reviews.llvm.org/D87926
2020-09-23 09:06:07 -07:00
Jacques Pienaar 80deb1e106 [mlir][ods] Custom builder with no params
Incorrect generation of custom build method without any params.
2020-09-23 08:11:13 -07:00
Mehdi Amini fb1de7ed92 Implement a new kind of Pass: dynamic pass pipeline
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.

Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637

Recommit after fixing an ASAN issue: the callback lambda needs to be
allocated to a temporary to have its lifetime extended to the end of the
current block instead of just the current call expression.

Reviewed By: silvas

Differential Revision: https://reviews.llvm.org/D86392
2020-09-22 18:51:54 +00:00
Jacques Pienaar 2a6db92ca9 [mlir][ods] Make OpBuilder and OperationState optional
The OpBuilder is required to start with OpBuilder and OperationState, so remove
the need for the user to specify it. To make it simpler to update callers,
retain the legacy behavior for now and skip injecting OpBuilder/OperationState
when params start with OpBuilder.

Related to bug 47442.

Differential Revision: https://reviews.llvm.org/D88050
2020-09-22 10:04:21 -07:00
Thomas Joerg 0356a413a4 Revert "Implement a new kind of Pass: dynamic pass pipeline"
This reverts commit 385c3f43fc.

Test  mlir/test/Pass:dynamic-pipeline-fail-on-parent.mlir.test fails
when run with ASAN:

ERROR: AddressSanitizer: stack-use-after-scope on address ...

Reviewed By: bkramer, pifon2a

Differential Revision: https://reviews.llvm.org/D88079
2020-09-22 12:00:30 +02:00
Nicolas Vasilache ed229132f1 [mlir][Linalg] Uniformize linalg.generic with named ops.
This revision allows representing a reduction at the level of linalg on tensors for generic ops by uniformizing with the named ops approach.
2020-09-22 04:13:22 -04:00
Mehdi Amini 385c3f43fc Implement a new kind of Pass: dynamic pass pipeline
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.

Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637

Reviewed By: silvas

Differential Revision: https://reviews.llvm.org/D86392
2020-09-22 01:24:25 +00:00
jerryyin f87ceb63eb [AMDGPU] Adding mutex to guard lld:🧝:link interface use
check-mlir target run tests simultaneously with multiple threads. This caused multiple threads to invoke the `lld:🧝:link()` interface at the same time. Since the interface does not have a thread-safe implementation, add a metex to prevent multi-threaded access.

I discovered this by looking the the failure stack trace. lld/ELF/symbolTable.cpp, SymbolTable::insert() hit into an assert with related to Epoch Trackers. The root cause is to due to there is no protection around the symMap (update) which is implemented in non-thread safe data structure: denseMap.

Differential Revision: https://reviews.llvm.org/D88038
2020-09-21 11:37:57 -07:00
Nicolas Vasilache 93fd30bac3 [mlir][Linalg] Evolve named ops to use assembly form and support linalg on tensors.
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.

As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:

```
  linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
               outs(%c : memref<?x?xf32>)
```

, whereas the syntax for a `linalg.matmul` returning a new tensor is:

```
  %d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
                    init(%c : memref<?x?xf32>)
                      -> tensor<?x?xf32>
```

Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
2020-09-18 06:14:30 -04:00
Rahul Joshi 8069844577 [MLIR][TableGen] Automatic detection and elimination of redundant methods
- Change OpClass new method addition to find and eliminate any existing methods that
  are made redundant by the newly added method, as well as detect if the newly added
  method will be redundant and return nullptr in that case.
- To facilitate that, add the notion of resolved and unresolved parameters, where resolved
  parameters have each parameter type known, so that redundancy checks on methods
  with same name but different parameter types can be done.
- Eliminate existing code to avoid adding conflicting/redundant build methods and rely
  on this new mechanism to eliminate conflicting build methods.

Fixes https://bugs.llvm.org/show_bug.cgi?id=47095

Differential Revision: https://reviews.llvm.org/D87059
2020-09-17 16:04:37 -07:00
Navdeep Kumar 0602e8f77f [MLIR][Affine] Add parametric tile size support for affine.for tiling
Add support to tile affine.for ops with parametric sizes (i.e., SSA
values). Currently supports hyper-rectangular loop nests with constant
lower bounds only. Move methods

  - moveLoopBody(*)
  - getTileableBands(*)
  - checkTilingLegality(*)
  - tilePerfectlyNested(*)
  - constructTiledIndexSetHyperRect(*)

to allow reuse with constant tile size API. Add a test pass -test-affine
-parametric-tile to test parametric tiling.

Differential Revision: https://reviews.llvm.org/D87353
2020-09-17 23:39:14 +05:30
jerryyin fb18202836 [AMDGPU] Fix ROCm unit test memref initialization 2020-09-17 09:48:05 -07:00
jerryyin e4a198eeee [AMDGPU] Bump to ROCm 3.7 dependency hip_hcc->amdhip64
Differential Revision: https://reviews.llvm.org/D87773
2020-09-17 06:45:51 -07:00
Federico Lebrón 7d1ed69c8a Make namespace handling uniform across dialect backends.
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D86811
2020-09-14 20:33:31 +00:00
Nicolas Vasilache e6f2f17f05 [mlir][Linalg] Refactor StructuredOpInterface - NFC
This revision refactors and cleans up a bunch of things to simplify StructuredOpInterface
before work can proceed on Linalg on tensors:
- break out pieces of the StructuredOps trait that are part of the StructuredOpInterface,
- drop referenceIterators and referenceIndexingMaps that end up being more confusing than useful,
- drop NamedStructuredOpTrait
2020-09-11 07:53:12 -04:00
MaheshRavishankar 0a391c6079 [mlir][Analysis] Allow Slice Analysis to work with linalg::LinalgOp
Differential Revision: https://reviews.llvm.org/D87307
2020-09-10 18:54:22 -07:00
Jakub Lichman 67b37f571c [mlir] Conv ops vectorization pass
In this commit a new way of convolution ops lowering is introduced.
The conv op vectorization pass lowers linalg convolution ops
into vector contractions. This lowering is possible when conv op
is first tiled by 1 along specific dimensions which transforms
it into dot product between input and kernel subview memory buffers.
This pass converts such conv op into vector contraction and does
all necessary vector transfers that make it work.

Differential Revision: https://reviews.llvm.org/D86619
2020-09-08 08:47:42 +00:00
Mehdi Amini 63d1dc6665 Add a doc/tutorial on traversing the IR
Reviewed By: stephenneuendorffer

Differential Revision: https://reviews.llvm.org/D87221
2020-09-08 00:07:03 +00:00
Marius Brehler c633842f13 [mlir] Fix includes in mlir-translate
Drops the include on InitAllDialects.h, as dialects are now initialized in the translation passes.

Differential Revision: https://reviews.llvm.org/D87129
2020-09-04 15:22:38 +02:00
Lei Zhang 7939b76e2a [mlir] Support default valued attribute in StructsGen
Its handling is similar to optional attributes, except for the
getter method.

Reviewed By: rsuderman

Differential Revision: https://reviews.llvm.org/D87055
2020-09-03 09:46:44 -04:00
Mehdi Amini 6478caa034 Tweak `mlir-linalg-ods-gen` library dependency: only MLIRIR is needed, not the entire parser (NFC) 2020-09-02 23:58:32 +00:00
Thomas Raoux 8d65504223 [mlir][vulkan-runner] Explicitly export vulkan-runtime-wrapper entry points.
This ensure that the symbols are being exported no matter what default
visibility is set.
2020-09-01 15:37:54 -07:00
Mehdi Amini f54914081f Fix mlir-reduce to explicitly register dialects and disable the global dialect registry by default
Clients who rely on the Context loading dialects from the global
registry can call `mlir::enableGlobalDialectRegistry(true);` before
creating an MLIRContext

Differential Revision: https://reviews.llvm.org/D86897
2020-08-31 22:54:58 +00:00
River Riddle eaeadce9bd [mlir][OpFormatGen] Add initial support for regions in the custom op assembly format
This adds some initial support for regions and does not support formatting the specific arguments of a region. For now this can be achieved by using a custom directive that formats the arguments and then parses the region.

Differential Revision: https://reviews.llvm.org/D86760
2020-08-31 13:26:24 -07:00
River Riddle 24b88920fe [mlir][ODS] Add new SymbolNameAttr and add support for in assemblyFormat
Symbol names are a special form of StringAttr that get treated specially in certain areas, such as formatting. This revision adds a special derived attr for them in ODS and adds support in the assemblyFormat for formatting them properly.

Differential Revision: https://reviews.llvm.org/D86759
2020-08-31 13:26:23 -07:00
River Riddle 88c6e25e4f [mlir][OpFormatGen] Add support for specifiy "custom" directives.
This revision adds support for custom directives to the declarative assembly format. This allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. The custom directive is structured as follows:

```
custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`
```

`user-directive` is used as a suffix when this directive is used during printing and parsing. When parsing, `parseUserDirective` will be invoked. When printing, `printUserDirective` will be invoked. The first parameter to these methods must be a reference to either the OpAsmParser, or OpAsmPrinter. The type of rest of the parameters is dependent on the `Params` specified in the assembly format.

Differential Revision: https://reviews.llvm.org/D84719
2020-08-31 13:26:23 -07:00
Mehdi Amini 719548d63d Fix gcc warning by explicitly initializing the base class copy ctor (NFC)
Full diagnostic was:

warning: base class ‘class mlir::OptReductionBase<mlir::OptReductionPass>’ should be explicitly initialized in the copy constructor [-Wextra]
2020-08-30 17:46:51 +00:00
Kamlesh Kumar deb99610ab Improve doc comments for several methods returning bools
Differential Revision: https://reviews.llvm.org/D86848
2020-08-30 13:33:05 +05:30
Kazuaki Ishizaki a23d055912 [mlir] NFC: fix trivial typo under test and tools
Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D86648
2020-08-27 15:37:42 +09:00
Ni Hui df2efd7700 Fix MLIR build with MLIR_INCLUDE_TESTS=OFF
error message

/usr/bin/ld: CMakeFiles/mlir-opt.dir/mlir-opt.cpp.o: in function `main':
mlir-opt.cpp:(.text.startup.main+0xb9): undefined reference to `mlir::registerTestDialect(mlir::DialectRegistry&)'

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D86592
2020-08-27 04:04:20 +00:00
River Riddle d289a97f91 [mlir][PDL] Add a PDL Interpreter Dialect
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.

An example of this representation is shown below:

```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite %root {
    pdl.replace %root with (%inputOperand)
  }
}

// May be represented in the interpreter dialect as follows:
module {
  func @matcher(%arg0: !pdl.operation) {
    pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
  ^bb1:
    pdl_interp.return
  ^bb2:
    pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
  ^bb3:
    pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
  ^bb4:
    %0 = pdl_interp.get_operand 0 of %arg0
    pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
  ^bb5:
    %1 = pdl_interp.get_result 0 of %arg0
    pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
  ^bb6:
    pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
  }
  module @rewriters {
    func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
      pdl_interp.replace %arg1 with(%arg0)
      pdl_interp.return
    }
  }
}
```

Differential Revision: https://reviews.llvm.org/D84579
2020-08-26 05:22:27 -07:00
Eric Christopher 1a2a34a38a Add NDEBUG checks around debug only loop to avoid unused variable
warnings.
2020-08-24 17:58:57 -07:00
Mehdi Amini f164534ca8 Add a `dialect_registration` callback for "translations" registered with mlir-translate
This will allow out-of-tree translation to register the dialects they expect
to see in their input, on the model of getDependentDialects() for passes.

Differential Revision: https://reviews.llvm.org/D86409
2020-08-23 01:00:39 +00:00
Mehdi Amini 96cb8cdeb0 Refactor `mlir-translate` to extract the `main()` logic in a helper on the model of `MlirOptMain()` (NFC)
Differential Revision: https://reviews.llvm.org/D86408
2020-08-23 01:00:31 +00:00
Mauricio Sifontes 21f8d41468 Refactor Reduction Tree Pass
Refactor the way the reduction tree pass works in the MLIR Reduce tool by introducing a set of utilities that facilitate the implementation of new Reducer classes to be used in the passes.

This will allow for the fast implementation of general transformations to operate on all mlir modules as well as custom transformations for different dialects.

These utilities allow for the implementation of Reducer classes by simply defining a method that indexes the operations/blocks/regions to be transformed and a method to perform the deletion or transfomration based on the indexes.

Create the transformSpace class member in the ReductionNode class to keep track of the indexes that have already been transformed or deleted at a current level.

Delete the FunctionReducer class and replace it with the OpReducer class to reflect this new API while performing the same transformation and allowing the instantiation of a reduction pass for different types of operations at the module's highest hierarchichal level.

Modify the SinglePath Traversal method to reflect the use of the new API.

Reviewed: jpienaar

Differential Revision: https://reviews.llvm.org/D85591
2020-08-21 04:59:24 +00:00
River Riddle 3fb3927bd3 [mlir] Add a new "Pattern Descriptor Language" (PDL) dialect.
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.

PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.

An example pattern is shown below:

```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
  // External input operand values are specified via `pdl.input` operations.
  // Result types are constrainted via `pdl.type` operations.

  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite(%root) {
    pdl.replace %root with (%inputOperand)
  }
}
```

This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ

Differential Revision: https://reviews.llvm.org/D84578
2020-08-19 13:13:06 -07:00
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00