ScheduleDAGInstrs doesn't behave differently before or after register
allocation. It was only used in a method of MachineSchedulerBase which
behaved differently in MachineScheduler/PostMachineScheduler. Change
this to let MachineScheduler/PostMachineScheduler just pass in a
parameter to that function.
The order of the LiveIntervals* and bool RemoveKillFlags paramters have
been switched to make out-of-tree code fail instead of unintentionally
passing a value intended for the IsPostRA flag to the (previously
following and default initialized) RemoveKillFlags.
Differential Revision: http://reviews.llvm.org/D14245
llvm-svn: 251883
Which is needed if we want to replace darwin’s nm(1) with llvm-nm
as there are many uses of grouped flags. The added test case is
one specific case that is in real use.
rdar://23337419
llvm-svn: 251864
This was causing a variety of test failures when v2i64
is added as a legal type.
SIFixSGPRCopies should correctly handle the case of vector inputs
to a scalar reg_sequence, so this isn't necessary anymore. This
was hiding some deficiencies in how reg_sequence is handled later,
but this shouldn't be a problem anymore since the register class
copy of a reg_sequence is now done before the reg_sequence.
llvm-svn: 251860
I've found myself pointlessly debugging problems from running
graphics tests with an HSA triple a few times, so stop this from
happening again.
llvm-svn: 251858
This is a redo of r251849 except the tests have been split into arch-specific folders
to hopefully make the bots happy.
This is a follow-up from the discussion in D12965. The block-at-a-time limitation of
SelectionDAG also came up in D13297.
Without the InstCombine change from D12965, I don't expect this patch to make any
difference in the real world because InstCombine does not shrink cases like this in
visitSwitchInst(). But we need to have this CGP safety harness in place before
proceeding with any shrinkage in D12965, so we won't generate extra extends for compares.
I've opted for IR regression tests in the patch because that seems like a clearer way to
test the transform, but PowerPC CodeGen for an i16 widening test is shown below. x86
will need more work to solve: https://llvm.org/bugs/show_bug.cgi?id=22473
Before:
BB#0:
mr 4, 3
extsh. 3, 4
ble 0, .LBB0_5
BB#1:
cmpwi 3, 99
bgt 0, .LBB0_9
BB#2:
rlwinm 4, 4, 0, 16, 31 <--- 32-bit mask/extend
li 3, 0
cmplwi 4, 1
beqlr 0
BB#3:
cmplwi 4, 10
bne 0, .LBB0_12
BB#4:
li 3, 1
blr
.LBB0_5:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 65436
beq 0, .LBB0_13
BB#6:
cmplwi 3, 65526
beq 0, .LBB0_15
BB#7:
cmplwi 3, 65535
bne 0, .LBB0_12
BB#8:
li 3, 4
blr
.LBB0_9:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 100
beq 0, .LBB0_14
...
After:
BB#0:
rlwinm 4, 3, 0, 16, 31 <--- mask/extend to 32-bit and then use that for comparisons
cmpwi 4, 999
ble 0, .LBB0_5
BB#1:
lis 3, 0
ori 3, 3, 65525
cmpw 4, 3
bgt 0, .LBB0_9
BB#2:
cmplwi 4, 1000
beq 0, .LBB0_14
BB#3:
cmplwi 4, 65436
bne 0, .LBB0_13
BB#4:
li 3, 6
blr
.LBB0_5:
li 3, 0
cmplwi 4, 1
beqlr 0
BB#6:
cmplwi 4, 10
beq 0, .LBB0_12
BB#7:
cmplwi 4, 100
bne 0, .LBB0_13
BB#8:
li 3, 2
blr
.LBB0_9:
cmplwi 4, 65526
beq 0, .LBB0_15
BB#10:
cmplwi 4, 65535
bne 0, .LBB0_13
...
Differential Revision: http://reviews.llvm.org/D13532
llvm-svn: 251857
To be able to maximize the bandwidth during vectorization, this patch provides a new flag vectorizer-maximize-bandwidth. When it is turned on, the vectorizer will determine the vectorization factor (VF) using the smallest instead of widest type in the loop. To avoid increasing register pressure too much, estimates of the register usage for different VFs are calculated so that we only choose a VF when its register usage doesn't exceed the number of available registers.
This is the second attempt to submit this patch. The first attempt got a test failure on ARM. This patch is updated to try to fix the failure (more specifically, by handling the case when VF=1).
Differential revision: http://reviews.llvm.org/D8943
llvm-svn: 251850
This is a follow-up from the discussion in D12965. The block-at-a-time limitation of
SelectionDAG also came up in D13297.
Without the InstCombine change from D12965, I don't expect this patch to make any
difference in the real world because InstCombine does not shrink cases like this in
visitSwitchInst(). But we need to have this CGP safety harness in place before
proceeding with any shrinkage in D12965, so we won't generate extra extends for compares.
I've opted for IR regression tests in the patch because that seems like a clearer way to
test the transform, but PowerPC CodeGen for an i16 widening test is shown below. x86
will need more work to solve: https://llvm.org/bugs/show_bug.cgi?id=22473
Before:
BB#0:
mr 4, 3
extsh. 3, 4
ble 0, .LBB0_5
BB#1:
cmpwi 3, 99
bgt 0, .LBB0_9
BB#2:
rlwinm 4, 4, 0, 16, 31 <--- 32-bit mask/extend
li 3, 0
cmplwi 4, 1
beqlr 0
BB#3:
cmplwi 4, 10
bne 0, .LBB0_12
BB#4:
li 3, 1
blr
.LBB0_5:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 65436
beq 0, .LBB0_13
BB#6:
cmplwi 3, 65526
beq 0, .LBB0_15
BB#7:
cmplwi 3, 65535
bne 0, .LBB0_12
BB#8:
li 3, 4
blr
.LBB0_9:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 100
beq 0, .LBB0_14
...
After:
BB#0:
rlwinm 4, 3, 0, 16, 31 <--- mask/extend to 32-bit and then use that for comparisons
cmpwi 4, 999
ble 0, .LBB0_5
BB#1:
lis 3, 0
ori 3, 3, 65525
cmpw 4, 3
bgt 0, .LBB0_9
BB#2:
cmplwi 4, 1000
beq 0, .LBB0_14
BB#3:
cmplwi 4, 65436
bne 0, .LBB0_13
BB#4:
li 3, 6
blr
.LBB0_5:
li 3, 0
cmplwi 4, 1
beqlr 0
BB#6:
cmplwi 4, 10
beq 0, .LBB0_12
BB#7:
cmplwi 4, 100
bne 0, .LBB0_13
BB#8:
li 3, 2
blr
.LBB0_9:
cmplwi 4, 65526
beq 0, .LBB0_15
BB#10:
cmplwi 4, 65535
bne 0, .LBB0_13
...
Differential Revision: http://reviews.llvm.org/D13532
llvm-svn: 251849
This reverts commit r251837, due to a number of bot failures of the form:
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to
'llvm::object::FunctionIndexObjectFile::create(llvm::MemoryBufferRef,
llvm::LLVMContext&, llvm::Module const*, bool)'
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to 'llvm::object::FunctionIndexObjectFile::takeIndex()'
I'm not sure why these are happening - I added Object to the requred
libraries in tools/llvm-link/LLVMBuild.txt and the LLVM_LINK_COMPONENTS
in tools/llvm-link/CMakeLists.txt. Confirmed for my build that these
symbols come out of libLLVMObject.a. What am I missing?
llvm-svn: 251841
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251839
Summary:
Support for necessary linkage changes and symbol renaming during
ThinLTO function importing.
Also includes llvm-link support for manually importing functions
and associated llvm-link based tests.
Note that this does not include support for intelligently importing
metadata, which is currently imported duplicate times. That support will
be in the follow-on patch, and currently is ignored by the tests.
Reviewers: dexonsmith, joker.eph, davidxl
Subscribers: tobiasvk, tejohnson, llvm-commits
Differential Revision: http://reviews.llvm.org/D13515
llvm-svn: 251837
In the current BB placement algorithm, a loop chain always contains all loop blocks. This has a drawback that cold blocks in the loop may be inserted on a hot function path, hence increasing branch cost and also reducing icache locality.
Consider a simple example shown below:
A
|
B⇆C
|
D
When B->C is quite cold, the best BB-layout should be A,B,D,C. But the current implementation produces A,C,B,D.
This patch filters those cold blocks off from the loop chain by comparing the ratio:
LoopBBFreq / LoopFreq
to 20%: if it is less than 20%, we don't include this BB to the loop chain. Here LoopFreq is the frequency of the loop when we reduce the loop into a single node. In general we have more cold blocks when the loop has few iterations. And vice versa.
Differential revision: http://reviews.llvm.org/D11662
llvm-svn: 251833
1) PR25154. This is basically a repeat of PR18102, which was fixed in
r200201, and broken again by r234430. The latter changed which of the
store nodes was merged into from the first to the last. Thus, we now
also need to prefer merging a later store at a given address into the
target node, instead of an earlier one.
2) While investigating that, I also realized I'd introduced a bug in
r236850. There, I removed a check for alignment -- not realizing that
nothing except the alignment check was ensuring that none of the stores
were overlapping! This is a really bogus way to ensure there's no
aliased stores.
A better solution to both of these issues is likely to always use the
code added in the 'if (UseAA)' branches which rearrange the chain based
on a more principled analysis. I'll look into whether that can be used
always, but in the interest of getting things back to working, I think a
minimal change makes sense.
llvm-svn: 251816
The existing -v option only displays commands and outputs for failed
tests, the newly introduced -a displays it for all executed tests.
llvm-svn: 251806
Summary:
SCEV Predicates represent conditions that typically cannot be derived from
static analysis, but can be used to reduce SCEV expressions to forms which are
usable for different optimizers.
ScalarEvolution now has the rewriteUsingPredicate method which can simplify a
SCEV expression using a SCEVPredicateSet. The normal workflow of a pass using
SCEVPredicates would be to hold a SCEVPredicateSet and every time assumptions
need to be made a new SCEV Predicate would be created and added to the set.
Each time after calling getSCEV, the user will call the rewriteUsingPredicate
method.
We add two types of predicates
SCEVPredicateSet - implements a set of predicates
SCEVEqualPredicate - tests for equality between two SCEV expressions
We use the SCEVEqualPredicate to re-implement stride versioning. Every time we
version a stride, we will add a SCEVEqualPredicate to the context.
Instead of adding specific stride checks, LoopVectorize now adds a more
generic SCEV check.
We only need to add support for this in the LoopVectorizer since this is the
only pass that will do stride versioning.
Reviewers: mzolotukhin, anemet, hfinkel, sanjoy
Subscribers: sanjoy, hfinkel, rengolin, jmolloy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13595
llvm-svn: 251800
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. It turns out that the new code path taken due to
legalizing a scalar_to_vector of i64 -> v2i64 exposes a missing check in a
micro optimization to change a load followed by a scalar_to_vector into a
load and splat instruction on PPC.
llvm-svn: 251798
Summary:
The new function sys::path::user_cache_directory tries to discover
a directory suitable for cache storage for current system user.
On Windows and Darwin it returns a path to system-specific user cache directory.
On Linux it follows XDG Base Directory Specification, what is:
- use non-empty $XDG_CACHE_HOME env var,
- use $HOME/.cache.
Reviewers: chapuni, aaron.ballman, rafael
Subscribers: rafael, aaron.ballman, llvm-commits
Differential Revision: http://reviews.llvm.org/D13801
llvm-svn: 251784
1. Added a set of public interfaces in InstrProfRecord
class to access (read/write) value profile data.
2. Changed IndexedProfile reader and writer code to
use the newly defined interfaces and hide implementation
details.
3. Added a couple of unittests for value profiling:
- Test new interfaces to get and set value profile data
- Test value profile data merging with various scenarios.
No functional change is expected. The new interfaces will also
make it possible to change on-disk format of value prof data
to be more compact (to be submitted).
llvm-svn: 251771
Have `getConstantEvolutionLoopExitValue` work correctly with multiple
entry loops.
As far as I can tell, `getConstantEvolutionLoopExitValue` never did the
right thing for multiple entry loops; and before r249712 it would
silently return an incorrect answer. r249712 changed SCEV to fail an
assert on a multiple entry loop, and this change fixes the underlying
issue.
llvm-svn: 251770
Optimized <8 x i32> to <8 x i16>
<4 x i64> to < 4 x i32>
<16 x i16> to <16 x i8>
All these oprtrations use now AVX512F set (KNL). Before this change it was implemented with AVX2 set.
Differential Revision: http://reviews.llvm.org/D14108
llvm-svn: 251764
This adds support for COFF I386. This is sufficient for code execution in a
32-bit JIT, though, imported symbols need to custom lowered for the redirection.
llvm-svn: 251761
Prevent `createNodeFromSelectLikePHI` from creating SCEV expressions
that break LCSSA.
A better fix for the same issue is to teach SCEVExpander to not break
LCSSA by inserting PHI nodes at appropriate places. That's planned for
the future.
Fixes PR25360.
llvm-svn: 251756
The initial coverage checking code for sample records failed to count
records inside inlined profiles. This change fixes the oversight.
llvm-svn: 251752
This is a bit ugly, but has a few advantages:
* Archive is now easy to copy since there is no Archive -> Child -> Archive
loop.
* It makes it clear that we already checked for errors when finding the Child
data.
llvm-svn: 251750
attribute is not present.
During my refactor in r251595 I changed the behavior of optimizeSqrt(),
skipping the transformation if the function wasn't marked with unsafe-fp-math
attribute. This fixed a bug, as confirmed by Sanjay (before the optimization
was silently executed anyway), although it wasn't my primary aim.
This commit adds a test to ensure the code doesn't break again.
Reported by: Marcello Maggioni
Discussed with: Sanjay Patel
llvm-svn: 251747
This complements CopyConstructorNotSmallTest. If we are testing the copy
constructor in such a way, we should also probably test assignment in the same
way.
llvm-svn: 251736
While llvm-nm parses the -g option and has help that describes it as:
-extern-only - Show only external symbols
There is no code in the program to use the boolean valve it sets from the
command line.
rdar://23261095
llvm-svn: 251718
from its pass harness by providing a lambda to query for AA results.
This allows the legacy pass to easily provide a lambda that uses the
special helpers to construct function AA results from a legacy CGSCC
pass. With the new pass manager (the next patch) the lambda just
directly wraps the intuitive query API.
llvm-svn: 251715
Summary:
When forming expressions for phi nodes having an incoming value from
outside the loop A and a value coming from the previous iteration B
we were forming an AddRec if:
- B was an AddRec
- the value A was equal to the value for B at iteration -1 (or equal
to the value of B shifted by one iteration, at iteration 0)
In this case, we were computing the expression to be the expression of
B, shifted by one iteration.
This changes generalizes the logic above by removing the restriction that
B needs to be an AddRec. For this we introduce two expression rewriters
that allow us to
- shift an expression by one iteration
- get the value of an expression at iteration 0
This allows us to get SCEV expressions for PHI nodes when these expressions
are not AddRecExprs.
Reviewers: sanjoy
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D14175
llvm-svn: 251700
Update the discriminator assignment algorithm
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251689
Update the discriminator assignment algorithm
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251685
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251680
Introduce LLVMSymbolizer::symbolizeInlinedCode() instead of switching
on PrintInlining option passed to the constructor. This will be needed
once we retrun structured data (instead of std::string) from
LLVMSymbolizer and move printing logic out.
llvm-svn: 251675
Summary:
This reverts commit 79c37e1a4ff1e634da8f95322f080601b4c815fc.
This test passes locally but fails on the community buildbot. So we will let it
XFAIL for now.
Patched by Mandeep Singh Grang (mgrang@codeaurora.org)
Reviewers: kparzysz, weimingz
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14189
llvm-svn: 251664
Summary:
This is mostly NFC. It is a first step in cleaning up LLVMSymbolize
library. It removes "ModuleInfo" class which bundles together ObjectFile
and its debug info context in favor of:
* abstract SymbolizableModule in public headers;
* SymbolizableObjectFile subclass in implementation.
Additionally, SymbolizableObjectFile is now created via factory, so we
can properly detect object parsing error at this stage instead of keeping
the broken half-parsed object. As a next step, we would be able to
propagate the error all the way back to the library user.
Further improvements might include:
* factoring out the logic of finding appropriate file with debug info
for a given object file, and caching all parsed object files into a
separate class [A].
* factoring out DILineInfo rendering [B].
This would make what is now a heavyweight "LLVMSymbolizer" a relatively
straightforward class, that calls into [A] to turn filepath into a
SymbolizableModule, delegates actual symbolization to concrete SymbolizableModule
implementation, and lets [C] render the result.
Reviewers: dblaikie, echristo, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14099
llvm-svn: 251662
This patch generalizes the zeroing of vector elements with the BLEND instructions. Currently a zero vector will only blend if the shuffled elements are correctly inline, this patch recognises when a vector input is zero (or zeroable) and modifies a local copy of the shuffle mask to support a blend. As a zeroable vector input may not be all zeroes, the zeroable vector is regenerated if necessary.
Differential Revision: http://reviews.llvm.org/D14050
llvm-svn: 251659
Summary:
I noticed when manually modifying this test that it was passing when I
expected it to fail. Looks like the combination of LABEL and NOT on the
check does not work. This can also be seen when running FileCheck with
only that one -check-prefix (removing the additional -check-prefix=B):
/usr/local/google/home/tejohnson/llvm/llvm_11_build/./bin/llvm-link -S -internalize -only-needed /usr/local/google/home/tejohnson/llvm/llvm_11_build/test/Linker/Output/link-flags.ll.tmp.b.bc /usr/local/google/home/tejohnson/llvm/llvm_11_build/test/Linker/Output/link-flags.ll.tmp.c.bc | /usr/local/google/home/tejohnson/llvm/llvm_11_build/./bin/FileCheck /usr/local/google/home/tejohnson/llvm/llvm_11/test/Linker/link-flags.ll -check-prefix=CN
error: no check strings found with prefix 'CN:'
The CN prefix checks don't in fact need "LABEL" so remove that.
Reviewers: tra
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14173
llvm-svn: 251655
Summary: Refer PR23377. This test was XFAIL'ed for Hexagon as well as ARM. But it has now started passing for ARM.
Reviewers: hans, rengolin, aemerson, kparzysz
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14155
llvm-svn: 251652
transformations in FunctionAttrs rather than building a new one each
time.
This isn't trivial because there are different heuristics from different
passes for exactly what set they want. The primary difference is whether
an *overridable* function completely disables the synthesis of
attributes. I've modeled this by directly testing for overridable, and
using the common set that excludes external and opt-none functions.
This does cause some changes by disabling more optimizations in the face
of opt-none. Specifically, we were still optimizing *calls* to opt-none
functions based on their attributes, just not the bodies. It seems
better to be conservative on both fronts given the intended semanticas
here (best effort to not assume or disturb anything). I've not tried to
test this change as it seems complex, brittle, and not important to the
implicit contract of opt-none. Instead, it seems more like a choice that
should be dictated by the simplified implementation and the change to be
acceptable differences within the space of opt-none.
A big benefit here is that these transformations no longer rely on the
legacy pass manager's SCC types, they just work on generic sets of
function pointers. This will make it easy to re-use their logic in the
new pass manager.
I've also made the transforms static functions instead of members where
trivial while I was touching the signatures.
llvm-svn: 251640
This was discovered to be necessary while running memchr-01.ll with
-verify-machinstrs, because it is not allowed to have a phys reg live
accross block boundaries while on SSA form, if the register is
allocatable (expect in entry block and landing pads).
In this test case, stringRRE pseudos are expanded after isel by adding
a loop block which produces a live out CC register. To make the test
pass, it was also necessary to not say that StringRRELoop pseudo uses
R0L, this is only true for the StringRRE opcode.
-verify-machineinstrs added to memchr-01.ll test.
New test case int-cmp-51.ll to test that MachineCSE can eliminate
an identical compare (which it couldn't do before).
Reviewed by Ulrich Weigand
llvm-svn: 251634
Summary:
This commit resolves wrong opcodes for ll and sc instructions for r6 architecutres, which were generated in method MipsTargetLowering::emitAtomicBinary.
Author: Jelena.Losic
Reviewers: dsanders
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D13593
llvm-svn: 251629
Summary:
ARMv6KZ cores were set up incorrectly in ARM.td; also, the SMI mnemonic
(the old name for SMC, as defined in ARMv6KZ) wasn't supported.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14154
llvm-svn: 251627
This patch unify the 39-bit and 42-bit mapping for aarch64 to use only
one instrumentation algorithm. This removes compiler flag
SANITIZER_AARCH64_VMA requirement for MSAN on aarch64.
The mapping to use now is for 39 and 42-bits:
0x00000000000ULL-0x01000000000ULL MappingDesc::INVALID
0x01000000000ULL-0x02000000000ULL MappingDesc::SHADOW
0x02000000000ULL-0x03000000000ULL MappingDesc::ORIGIN
0x03000000000ULL-0x04000000000ULL MappingDesc::SHADOW
0x04000000000ULL-0x05000000000ULL MappingDesc::ORIGIN
0x05000000000ULL-0x06000000000ULL MappingDesc::APP
0x06000000000ULL-0x07000000000ULL MappingDesc::INVALID
0x07000000000ULL-0x08000000000ULL MappingDesc::APP
And only for 42-bits:
0x08000000000ULL-0x09000000000ULL MappingDesc::INVALID
0x09000000000ULL-0x0A000000000ULL MappingDesc::SHADOW
0x0A000000000ULL-0x0B000000000ULL MappingDesc::ORIGIN
0x0B000000000ULL-0x0F000000000ULL MappingDesc::INVALID
0x0F000000000ULL-0x10000000000ULL MappingDesc::APP
0x10000000000ULL-0x11000000000ULL MappingDesc::INVALID
0x11000000000ULL-0x12000000000ULL MappingDesc::APP
0x12000000000ULL-0x17000000000ULL MappingDesc::INVALID
0x17000000000ULL-0x18000000000ULL MappingDesc::SHADOW
0x18000000000ULL-0x19000000000ULL MappingDesc::ORIGIN
0x19000000000ULL-0x20000000000ULL MappingDesc::INVALID
0x20000000000ULL-0x21000000000ULL MappingDesc::APP
0x21000000000ULL-0x26000000000ULL MappingDesc::INVALID
0x26000000000ULL-0x27000000000ULL MappingDesc::SHADOW
0x27000000000ULL-0x28000000000ULL MappingDesc::ORIGIN
0x28000000000ULL-0x29000000000ULL MappingDesc::SHADOW
0x29000000000ULL-0x2A000000000ULL MappingDesc::ORIGIN
0x2A000000000ULL-0x2B000000000ULL MappingDesc::APP
0x2B000000000ULL-0x2C000000000ULL MappingDesc::INVALID
0x2C000000000ULL-0x2D000000000ULL MappingDesc::SHADOW
0x2D000000000ULL-0x2E000000000ULL MappingDesc::ORIGIN
0x2E000000000ULL-0x2F000000000ULL MappingDesc::APP
0x2F000000000ULL-0x39000000000ULL MappingDesc::INVALID
0x39000000000ULL-0x3A000000000ULL MappingDesc::SHADOW
0x3A000000000ULL-0x3B000000000ULL MappingDesc::ORIGIN
0x3B000000000ULL-0x3C000000000ULL MappingDesc::APP
0x3C000000000ULL-0x3D000000000ULL MappingDesc::INVALID
0x3D000000000ULL-0x3E000000000ULL MappingDesc::SHADOW
0x3E000000000ULL-0x3F000000000ULL MappingDesc::ORIGIN
0x3F000000000ULL-0x40000000000ULL MappingDesc::APP
And although complex it provides a better memory utilization that
previous one.
llvm-svn: 251624
Summary:
The microMIPS register class GPRMM16 does not contain the $zero register.
However, MipsSEDAGToDAGISel::replaceUsesWithZeroReg() would replace uses
of the $dst register:
[d]addiu, $dst, $zero, 0
with the $zero register, without checking for membership in the register
class of the target machine operand.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D13984
llvm-svn: 251622
Since the verifier will give false reports if it incorrectly thinks MI is
loading or storing using an FI, it is necessary to scan memoperands and
find out how the FI is used in the instruction. This should be relatively
rare.
Needed to make CodeGen/SystemZ/spill-01.ll pass, which now runs with this flag.
Reviewed by Quentin Colombet.
llvm-svn: 251620
Summary:
Conversion opcode name format should be f64.convert_u/i64 not f64_convert_u
Author: s3ththompson
Reviewers: jfb
Subscribers: sunfish, jfb, llvm-commits, dschuff
Differential Revision: http://reviews.llvm.org/D14160
llvm-svn: 251613
Clang driver now injects -u<hook_var> flag in the linker
command line, in which case user function is not needed
any more.
Differential Revision: http://reviews.llvm.org/D14033
llvm-svn: 251612
This was a layering violation in ScheduleDAGInstrs (and
MachineSchedulerBase) they both shouldn't know directly whether they are
used by the PostMachineScheduler or the MachineScheduler.
llvm-svn: 251608
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
Follow on to http://reviews.llvm.org/D13074, implementing something pointed out by Sanjoy. His truth table from his comment on that bug summarizes things well:
LHS | RHS | LHS >=s RHS | LHS implies RHS
0 | 0 | 1 (0 >= 0) | 1
0 | 1 | 1 (0 >= -1) | 1
1 | 0 | 0 (-1 >= 0) | 0
1 | 1 | 1 (-1 >= -1) | 1
The key point is that an "i1 1" is the value "-1", not "1".
Differential Revision: http://reviews.llvm.org/D13756
llvm-svn: 251597
The most common use case is when eliminating redundant range checks in an example like the following:
c = a[i+1] + a[i];
Note that all the smarts of the transform (the implication engine) is already in ValueTracking and is tested directly through InstructionSimplify.
Differential Revision: http://reviews.llvm.org/D13040
llvm-svn: 251596