Just enable this for AVX for now as SSE41 introduces extra register moves for the PMOVZX(PSHUFD(V)) -> UNPCKH(V,0) pattern (but otherwise helps reduce port5 usage on Intel targets).
Only AVX support is required for PR40685 as the issue is due to 8i8->8i32 zext shuffle leftovers.
llvm-svn: 356858
Fix: r356853 + set AddressAlign to 4 in
Inputs/compress-debug-sections.yaml for the new group section introduced.
Original commit message:
Currently, llvm-objcopy incorrectly handles compression and decompression of the
sections from COMDAT groups, because we do not implement the
replaceSectionReferences for this type of the sections.
The patch does that.
Differential revision: https://reviews.llvm.org/D59638
llvm-svn: 356856
This is yet another step towards solving PR14613:
https://bugs.llvm.org/show_bug.cgi?id=14613
uaddsat X, Y --> (X >u (X + Y)) ? -1 : X + Y
usubsat X, Y --> (X >u Y) ? X - Y : 0
We can't count on a sane vector ISA, so override the default (umin/umax)
expansion of unsigned add/sub saturate in cases where we do not have umin/umax.
Differential Revision: https://reviews.llvm.org/D59006
llvm-svn: 356855
This patch fixes the reason of ubsan failure (UB detected)
happened after landing the D59638 (I had to revert it).
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap-ubsan/builds/11760/steps/check-llvm%20ubsan/logs/stdio)
Problem is the following. Our implementation of GroupSection assumes that
its address is 4 bytes aligned when writes it:
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
ELF::Elf32_Word *Buf =
reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
...
But the test case for D59638 did not set AddressAlign in YAML. So address was
not 4 bytes aligned since Sec.Offset was odd. That triggered the issue.
This patch teaches llvm-objcopy to report an error for such sections (which should
not met in reality), what is better than having UB.
Differential revision: https://reviews.llvm.org/D59695
llvm-svn: 356853
This reverts commit 94a0cffe25 (r356764).
This change was originally committed in r356764, but then partially
reverted in r356777 due to "bad changes". This caused test failures
because the test changes committed along with the original change
were not reverted, so this change reverts the rest of the changes.
llvm-svn: 356811
In r322972/r323136, the iteration here was changed to catch cases at the
beginning of a basic block... but we accidentally deleted an important
safety check. Restore that check to the way it was.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41116
Differential Revision: https://reviews.llvm.org/D59680
llvm-svn: 356809
On 32-bit targets without popcnt, we currently expand 64-bit popcnt to sequences of arithmetic and logic ops for each 32-bit half and then add the 32 bit halves together. If we have xmm registers we can use use those to implement the operation instead. This results in less instructions then doing two separate 32-bit popcnt sequences.
This mitigates some of PR41151 for the i64 on i686 case when we have SSE2.
Differential Revision: https://reviews.llvm.org/D59662
llvm-svn: 356808
We used a lock cmpxchg8b to do i64 atomic loads. But if we have SSE2 we can do better and use a plain movq to do the load instead.
I tried to just use an f64 atomic load and add isel patterns to MOVSD(which the domain fixing pass can turn to MOVQ), but the atomic_load SDNode in TargetSelectionDAG.td requires the type to be integer.
So I've emitted VZEXT_LOAD instead which should be selected by isel to a MOVQ. Hopefully we don't need a specific atomic flavor of this. I kept the memory operand from the original AtomicSDNode. I wasn't sure if I might need to set the MOVolatile flag?
I've left some FIXMEs for improvements we can do without SSE2.
Differential Revision: https://reviews.llvm.org/D59679
llvm-svn: 356807
Summary:
Between building the pair map and querying it there are a few places that
erase and create Values. It's rare but the address of these newly created
Values is occasionally the same as a just-erased Value that we already
have in the pair map. These coincidences should be accounted for to avoid
non-determinism.
Thanks to Roman Tereshin for the test case.
Reviewers: rtereshin, bogner
Reviewed By: rtereshin
Subscribers: mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59401
llvm-svn: 356803
Just as as llvm IR supports explicitly specifying numeric value ids
for instructions, and emits them by default in textual output, now do
the same for blocks.
This is a slightly incompatible change in the textual IR format.
Previously, llvm would parse numeric labels as string names. E.g.
define void @f() {
br label %"55"
55:
ret void
}
defined a label *named* "55", even without needing to be quoted, while
the reference required quoting. Now, if you intend a block label which
looks like a value number to be a name, you must quote it in the
definition too (e.g. `"55":`).
Previously, llvm would print nameless blocks only as a comment, and
would omit it if there was no predecessor. This could cause confusion
for readers of the IR, just as unnamed instructions did prior to the
addition of "%5 = " syntax, back in 2008 (PR2480).
Now, it will always print a label for an unnamed block, with the
exception of the entry block. (IMO it may be better to print it for
the entry-block as well. However, that requires updating many more
tests.)
Thus, the following is supported, and is the canonical printing:
define i32 @f(i32, i32) {
%3 = add i32 %0, %1
br label %4
4:
ret i32 %3
}
New test cases covering this behavior are added, and other tests
updated as required.
Differential Revision: https://reviews.llvm.org/D58548
llvm-svn: 356789
Summary:
In C++, the behavior of casting a double value that is beyond the range
of a single precision floating-point to a float value is undefined. This
change replaces such a cast with APFloat::convert to convert the value,
which is consistent with how we convert a double value to a half value.
Reviewers: sanjoy
Subscribers: lebedev.ri, sanjoy, jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59500
llvm-svn: 356781
This helps to avoid the situation where RA spots that only 3 of the
v4f32 result of a load are used, and immediately reallocates the 4th
register for something else, requiring a stall waiting for the load.
Differential Revision: https://reviews.llvm.org/D58906
Change-Id: I947661edfd5715f62361a02b100f14aeeada29aa
llvm-svn: 356768
Summary:
Currently, llvm-readobj can dump symbol version sections only in LLVM style. In this patch, I would like to separate these dumpers into GNU style and
LLVM style for future implementation.
Reviewers: grimar, jhenderson, mattd, rupprecht
Reviewed By: rupprecht
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59186
llvm-svn: 356764
Some image ops return three or five dwords. Previously, we modeled that
with a 4 or 8 dword register class. The register allocator could
cleverly spot that some subregs were dead and allocate something else
there, but that caused the de-optimization that waitcnt insertion would
think that the result was used immediately.
This commit allows such an image op to have a result with a three or
five dword result, avoiding the above de-optimization.
Differential Revision: https://reviews.llvm.org/D58905
Change-Id: I3651211bbd7ed22721ee7b9fefd7bcc60a809d8b
llvm-svn: 356757
Now we have vec3 MVTs, this commit implements dwordx3 variants of the
buffer intrinsics.
On gfx6, a dwordx3 buffer load intrinsic is implemented as a dwordx4
instruction, and a dwordx3 buffer store intrinsic is not supported.
We need to support the dwordx3 load intrinsic because it is generated by
subtarget-unaware code in InstCombine.
Differential Revision: https://reviews.llvm.org/D58904
Change-Id: I016729d8557b98a52f529638ae97c340a5922a4e
llvm-svn: 356755
Summary:
This patch adds the ability to read a yaml form of a minidump file and
write it out as binary. Apart from the minidump header and the stream
directory, only three basic stream kinds are supported:
- Text: This kind is used for streams which contain textual data. This
is typically the contents of a /proc file on linux (e.g.
/proc/PID/maps). In this case, we just put the raw stream contents
into the yaml.
- SystemInfo: This stream contains various bits of information about the
host system in binary form. We expose the data in a structured form.
- Raw: This kind is used as a fallback when we don't have any special
knowledge about the stream. In this case, we just print the stream
contents in hex.
For this code to be really useful, more stream kinds will need to be
added (particularly for things like lists of memory regions and loaded
modules). However, these can be added incrementally.
Reviewers: jhenderson, zturner, clayborg, aprantl
Subscribers: mgorny, lemo, llvm-commits, lldb-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59482
llvm-svn: 356753
Also fix up a couple of minor issues in the test being updated, where
FileCheck could match on incorrect output and fix the test case order to
match the struct order.
Reviewed by: grimar
Differential Revision: https://reviews.llvm.org/D59691
llvm-svn: 356746
The RISC-V ISA defines RV32E as an alternative "base" instruction set
encoding, that differs from RV32I by having only 16 rather than 32 registers.
This patch adds basic definitions for RV32E as well as MC layer support
(assembling, disassembling) and tests. The only supported ABI on RV32E is
ILP32E.
Add a new RISCVFeatures::validate() helper to RISCVUtils which can be called
from codegen or MC layer libraries to validate the combination of TargetTriple
and FeatureBitSet. Other targets have similar checks (e.g. erroring if SPE is
enabled on PPC64 or oddspreg + o32 ABI on Mips), but they either duplicate the
checks (Mips), or fail to check for both codegen and MC codepaths (PPC).
Codegen for the ILP32E ABI support and RV32E codegen are left for a future
patch/patches.
Differential Revision: https://reviews.llvm.org/D59470
llvm-svn: 356744
This patch optimizes the emission of a sequence of SELECTs with the same
condition, avoiding the insertion of unnecessary control flow. Such a sequence
often occurs when a SELECT of values wider than XLEN is legalized into two
SELECTs with legal types. We have identified several use cases where the
SELECTs could be interleaved with other instructions. Therefore, we extend the
sequence to include non-SELECT instructions if we are able to detect that the
non-SELECT instructions do not impact the optimization.
This patch supersedes https://reviews.llvm.org/D59096, which attempted to
address this issue by introducing a new SelectionDAG node. Hat tip to Eli
Friedman for his feedback on how to best handle this issue.
Differential Revision: https://reviews.llvm.org/D59355
Patch by Luís Marques.
llvm-svn: 356741
Indicates in the TargetLowering interface that conversions from CC logic to
bitwise logic are allowed. Adds tests that show the benefit when optimization
opportunities are detected. Also adds tests that show that when the optimization
is not applied correct code is generated (but opportunities for other
optimizations remain).
Differential Revision: https://reviews.llvm.org/D59596
Patch by Luís Marques.
llvm-svn: 356740
Spec says about the first symbol table entry that index 0 both designates the first entry in the table
and serves as the undefined symbol index. It should have zero value.
Hence the first symbol table entry has no name. And so has to have a st_name == 0.
(http://refspecs.linuxbase.org/elf/gabi4+/ch4.symtab.html)
Currently, we do not emit zero value for the first symbol table entry.
That happens because we add empty strings to the string builder, which
for each such case adds a zero byte:
(https://github.com/llvm-mirror/llvm/blob/master/lib/MC/StringTableBuilder.cpp#L185)
After the string optimization performed it might return non zero indexes for the
empty string requested.
The patch fixes this issue for the case above and other sections with no names.
Differential revision: https://reviews.llvm.org/D59496
llvm-svn: 356739
Currently, llvm-objcopy incorrectly handles compression and decompression of the
sections from COMDAT groups, because we do not implement the
replaceSectionReferences for this type of the sections.
The patch does that.
Differential revision: https://reviews.llvm.org/D59638
llvm-svn: 356738
GNU objcopy can support output formats like elf32-i386-freebsd and
elf64-x86-64-freebsd. The only difference from their regular non-freebsd
counterparts that I have observed is that the freebsd versions set the
OS/ABI field to ELFOSABI_FREEBSD. This patch sets the OS/ABI field
according based on the format whenever --output-format is specified.
Reviewed by: rupprecht, grimar
Differential Revision: https://reviews.llvm.org/D59645
llvm-svn: 356737
They are not used by anything yet, but a subsequent commit will start
using them for image ops that return 5 dwords.
Differential Revision: https://reviews.llvm.org/D58903
Change-Id: I63e1904081e39a6d66e4eb96d51df25ad399d271
llvm-svn: 356735
Add more complete CHECK lines for the relocations generated when relaxation is
enabled, and add cases where a locally defined symbol is referenced.
Two instances of pcrel_lo(defined_symbol) are commented out, as they will
produce an error. A follow-up patch will fix this.
llvm-svn: 356734
The DataSecEentries is defined as an unordered_map since
order does not really matter.
std::unordered_map<std::string, std::unique_ptr<BTFKindDataSec>>
DataSecEntries;
This seems causing the test static-var-derived-type.ll flaky
as two sections ".bss" and ".readonly" have undeterministic
ordering when performing map iterating, which decides the
output assembly code sequence of BTF_KIND_DATASEC entries.
Fix the test to have only one data section to remove
flakiness.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 356731
Summary:
getRelocatedValue may compute incorrect value for SHT_RELA-typed relocation entries.
// DWARFDataExtractor.cpp
uint64_t DWARFDataExtractor::getRelocatedValue(uint32_t Size, uint32_t *Off,
...
// This formula is correct for REL, but may be incorrect for RELA if the value
// stored in the location (getUnsigned(Off, Size)) is not zero.
return getUnsigned(Off, Size) + Rel->Value;
In this patch, we
* refactor these visit* functions to include a new parameter `uint64_t A`.
Since these visit* functions are no longer used as visitors, rename them to resolve*.
+ REL: A is used as the addend. A is the value stored in the location where the
relocation applies: getUnsigned(Off, Size)
+ RELA: The addend encoded in RelocationRef is used, e.g. getELFAddend(R)
* and add another set of supports* functions to check if a given relocation type is handled.
DWARFObjInMemory uses them to fail early.
Reviewers: echristo, dblaikie
Reviewed By: echristo
Subscribers: mgorny, aprantl, aheejin, fedor.sergeev, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57939
llvm-svn: 356729
Currently, the type id for a derived type is computed incorrectly.
For example,
type #1: int
type #2: ptr to #1
For a global variable "int *a", type #1 will be attributed to variable "a".
This is due to a bug which assigns the type id of the basetype of
that derived type as the derived type's type id. This happens
to "const", "volatile", "restrict", "typedef" and "pointer" types.
This patch fixed this bug, fixed existing test cases and added
a new one focusing on pointers plus other derived types.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 356727
This is the result of discussions on the list about how to deal with intrinsics
which require codegen to disambiguate them via only the integer/fp overloads.
It causes problems for GlobalISel as some of that information is lost during
translation, while with other operations like IR instructions the information is
encoded into the instruction opcode.
This patch changes clang to emit the new faddp intrinsic if the vector operands
to the builtin have FP element types. LLVM IR AutoUpgrade has been taught to
upgrade existing calls to aarch64.neon.addp with fp vector arguments, and
we remove the workarounds introduced for GlobalISel in r355865.
This is a more permanent solution to PR40968.
Differential Revision: https://reviews.llvm.org/D59655
llvm-svn: 356722