Commit Graph

500 Commits

Author SHA1 Message Date
Arjun P 14056dfb4d [MLIR] Add support for extracting an integer sample point (if one exists) from an unbounded FlatAffineConstraints.
With this, we have complete support for finding integer sample points in FlatAffineConstraints.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D95047
2021-01-22 22:28:38 +05:30
Diego Caballero 735a07f047 Revert "[mlir][Affine] Add support for multi-store producer fusion"
This reverts commit 7dd198852b.

ASAN issue.
2021-01-21 00:37:23 +02:00
Diego Caballero 7dd198852b [mlir][Affine] Add support for multi-store producer fusion
This patch adds support for producer-consumer fusion scenarios with
multiple producer stores to the AffineLoopFusion pass. The patch
introduces some changes to the producer-consumer algorithm, including:

* For a given consumer loop, producer-consumer fusion iterates over its
producer candidates until a fixed point is reached.

* Producer candidates are gathered beforehand for each iteration of the
consumer loop and visited in reverse program order (not strictly guaranteed)
to maximize the number of loops fused per iteration.

In general, these changes were needed to simplify the multi-store producer
support and remove some of the workarounds that were introduced in the past
to support more fusion cases under the single-store producer limitation.

This patch also preserves the existing functionality of AffineLoopFusion with
one minor change in behavior. Producer-consumer fusion didn't fuse scenarios
with escaping memrefs and multiple outgoing edges (from a single store).
Multi-store producer scenarios will usually (always?) have multiple outgoing
edges so we couldn't fuse any with escaping memrefs, which would greatly limit
the applicability of this new feature. Therefore, the patch enables fusion for
these scenarios. Please, see modified tests for specific details.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D92876
2021-01-20 19:03:07 +02:00
Arjun P fa9851ebfe [MLIR] NFC: simplify PresburgerSet::isEqual
Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D94918
2021-01-18 22:47:25 +05:30
Arjun P 9f32f1d6fb [MLIR] Support checking if two FlatAffineConstraints are equal
This patch adds support for checking if two PresburgerSets are equal. In particular, one can check if two FlatAffineConstraints are equal by constructing PrebsurgerSets from them and comparing these.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D94915
2021-01-18 21:46:01 +05:30
Arjun P 6ebeba88f5 Support emptiness checks for unbounded FlatAffineConstraints.
With this, we have complete support for emptiness checks. This also paves the way for future support to check if two FlatAffineConstraints are equal.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D94272
2021-01-14 19:33:37 +01:00
Kazuaki Ishizaki f88fab5006 [mlir] NFC: fix trivial typos
fix typo under include and lib directories

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D94220
2021-01-08 02:10:12 +09:00
Christian Sigg 1ffc1aaa09 [mlir] Use mlir::OpState::operator->() to get to methods of mlir::Operation.
This is a preparation step to remove those methods from OpState.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D93098
2020-12-13 09:58:16 +01:00
Sergei Grechanik 2d3b9fdc19 [mlir][Affine] Fix vectorizability check for multiple load/stores
This patch fixes a bug that allowed vectorizing of loops with loads and
stores having indexing functions varying along different memory
dimensions.

Reviewed By: aartbik, dcaballe

Differential Revision: https://reviews.llvm.org/D92702
2020-12-09 12:19:34 -08:00
Christian Sigg c4a0405902 Add `Operation* OpState::operator->()` to provide more convenient access to members of Operation.
Given that OpState already implicit converts to Operator*, this seems reasonable.

The alternative would be to add more functions to OpState which forward to Operation.

Reviewed By: rriddle, ftynse

Differential Revision: https://reviews.llvm.org/D92266
2020-12-02 15:46:20 +01:00
River Riddle 65fcddff24 [mlir][BuiltinDialect] Resolve comments from D91571
* Move ops to a BuiltinOps.h
* Add file comments
2020-11-19 11:12:49 -08:00
Diego Caballero c1ba9c43ad [mlir][Affine] Refactor affine fusion code in pass to utilities
Refactoring/clean-up step needed to add support for producer-consumer fusion
with multi-store producer loops and, in general, to implement more general
loop fusion strategies in Affine. It introduces the following changes:
  - AffineLoopFusion pass now uses loop fusion utilities more broadly to compute
    fusion legality (canFuseLoops utility) and perform the fusion transformation
    (fuseLoops utility).
  - Loop fusion utilities have been extended to deal with AffineLoopFusion
    requirements and assumptions while preserving both loop fusion utilities and
    AffineLoopFusion current functionality within a unified implementation.
    'FusionStrategy' has been introduced for this purpose and, in the future, it
    will allow us to have a single loop fusion core implementation that will produce
    different fusion outputs depending on the strategy used.
  - Improve separation of concerns for legality and profitability analysis:
    'isFusionProfitable' no longer filters out illegal scenarios that 'canFuse'
    didn't detect, or the other way around. 'canFuse' now takes loop dependences
    into account to determine the fusion loop depth (producer-consumer fusion only).
  - As a result, maximal fusion now doesn't require any profitability analysis.
  - Slices are now computed only once and reused across the legality, profitability
    and fusion transformation steps (producer-consumer).
  - Refactor some utilities and remove redundant copies of them.

This patch is NFCI and should preserve the existing functionality of both the
AffineLoopFusion pass and the affine fusion utilities.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D90798
2020-11-18 13:50:32 -08:00
River Riddle 73ca690df8 [mlir][NFC] Remove references to Module.h and Function.h
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.

Differential Revision: https://reviews.llvm.org/D91572
2020-11-17 00:55:47 -08:00
Eugene Zhulenev bb0d5f767d [mlir] Add NumberOfExecutions analysis + update RegionBranchOpInterface interface to query number of region invocations
Implements RFC discussed in: https://llvm.discourse.group/t/rfc-operationinstancesinterface-or-any-better-name/2158/10

Reviewed By: silvas, ftynse, rriddle

Differential Revision: https://reviews.llvm.org/D90922
2020-11-11 01:43:17 -08:00
Frederik Gossen 1664462d70 [MLIR] Support walks over regions and blocks
Relands
- [MLIR] Support walks over regions and blocks
         (dbae3d50f1)
- [MLIR] Use llvm::is_one_of in walk templates
         (56299b1e58)

Differential Revision: https://reviews.llvm.org/D90753
2020-11-04 12:50:05 +00:00
Frederik Gossen 327bf5c2d9 Revert "[MLIR] Support walks over regions and blocks"
This reverts commit dbae3d50f1.
Cannot build with gcc/g++ 7.5.0.
2020-11-02 16:21:29 +00:00
Frederik Gossen dbae3d50f1 [MLIR] Support walks over regions and blocks
Add specializations for `walk` to allow traversal of regions and blocks.

Differential Revision: https://reviews.llvm.org/D90379
2020-10-29 14:34:22 +00:00
Kazuaki Ishizaki 41b09f4eff [mlir] NFC: fix trivial typos
fix typos in comments and documents

Reviewed By: jpienaar

Differential Revision: https://reviews.llvm.org/D90089
2020-10-29 04:05:22 +09:00
Frederik Gossen 6d83e3b443 [MLIR] Extract buffer alias analysis for reuse
Extract buffer alias analysis from buffer placement.

Differential Revision: https://reviews.llvm.org/D89902
2020-10-23 13:23:32 +00:00
River Riddle a5ea60456c [mlir] Update SCCP and the Inliner to use SymbolTableCollection for symbol lookups
This transforms the symbol lookups to O(1) from O(NM), greatly speeding up both passes. For a large MLIR module this shaved seconds off of the compilation time.

Differential Revision: https://reviews.llvm.org/D89522
2020-10-16 12:08:48 -07:00
Arjun P 63dead2096 Introduce subtraction for FlatAffineConstraints
Subtraction is a foundational arithmetic operation that is often used when computing, for example, data transfer sets or cache hits. Since the result of subtraction need not be a convex polytope, a new class `PresburgerSet` is introduced to represent unions of convex polytopes.

Reviewed By: ftynse, bondhugula

Differential Revision: https://reviews.llvm.org/D87068
2020-10-07 17:31:06 +02:00
Geoffrey Martin-Noble d4e889f1f5 Remove `Ops` suffix from dialect library names
Dialects include more than just ops, so this suffix is outdated. Follows
discussion in
https://llvm.discourse.group/t/rfc-canonical-file-paths-to-dialects/621

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D88530
2020-09-30 18:00:44 -07:00
Vincent Zhao f108e71437 [MLIR] Turns swapId into a FlatAffineConstraints member func
`swapId` used to be a static function in `AffineStructures.cpp`. This diff makes it accessible from the external world by turning it into a member function of `FlatAffineConstraints`. This will be very helpful for other projects that need to manipulate the content of `FlatAffineConstraints`.

Differential Revision: https://reviews.llvm.org/D87766
2020-09-17 11:22:10 +01:00
MaheshRavishankar 0a391c6079 [mlir][Analysis] Allow Slice Analysis to work with linalg::LinalgOp
Differential Revision: https://reviews.llvm.org/D87307
2020-09-10 18:54:22 -07:00
Kamlesh Kumar deb99610ab Improve doc comments for several methods returning bools
Differential Revision: https://reviews.llvm.org/D86848
2020-08-30 13:33:05 +05:30
Vincent Zhao 28a7dfa33d [MLIR] Fixed missing constraint append when adding an AffineIfOp domain
The prior diff that introduced `addAffineIfOpDomain` missed appending
constraints from the ifOp domain. This revision fixes this problem.

Differential Revision: https://reviews.llvm.org/D86421
2020-08-28 00:34:23 +05:30
Arjun P 33f574672f [MLIR] Redundancy detection for FlatAffineConstraints using Simplex
This patch adds the capability to perform constraint redundancy checks for `FlatAffineConstraints` using `Simplex`, via a new member function `FlatAffineConstraints::removeRedundantConstraints`. The pre-existing redundancy detection algorithm runs a full rational emptiness check for each inequality separately for checking redundancy. Leveraging the existing `Simplex` infrastructure, in this patch we have an algorithm for redundancy checks that can check each constraint by performing pivots on the tableau, which provides an alternative to running Fourier-Motzkin elimination for each constraint separately.

Differential Revision: https://reviews.llvm.org/D84935
2020-08-20 13:38:51 +05:30
Vincent Zhao 654e8aadfd [MLIR] Consider AffineIfOp when getting the index set of an Op wrapped in nested loops
This diff attempts to resolve the TODO in `getOpIndexSet` (formerly
known as `getInstIndexSet`), which states "Add support to handle IfInsts
surronding `op`".

Major changes in this diff:

1. Overload `getIndexSet`. The overloaded version considers both
`AffineForOp` and `AffineIfOp`.
2. The `getInstIndexSet` is updated accordingly: its name is changed to
`getOpIndexSet` and its implementation is based on a new API `getIVs`
instead of `getLoopIVs`.
3. Add `addAffineIfOpDomain` to `FlatAffineConstraints`, which extracts
new constraints from the integer set of `AffineIfOp` and merges it to
the current constraint system.
4. Update how a `Value` is determined as dim or symbol for
`ValuePositionMap` in `buildDimAndSymbolPositionMaps`.

Differential Revision: https://reviews.llvm.org/D84698
2020-08-09 03:16:03 +05:30
Vincent Zhao 754e09f9ce [MLIR] Add tiling validity check to loop tiling pass
This revision aims to provide a new API, `checkTilingLegality`, to
verify that the loop tiling result still satisifes the dependence
constraints of the original loop nest.

Previously, there was no check for the validity of tiling. For instance:

```
func @diagonal_dependence() {
  %A = alloc() : memref<64x64xf32>

  affine.for %i = 0 to 64 {
    affine.for %j = 0 to 64 {
      %0 = affine.load %A[%j, %i] : memref<64x64xf32>
      %1 = affine.load %A[%i, %j - 1] : memref<64x64xf32>
      %2 = addf %0, %1 : f32
      affine.store %2, %A[%i, %j] : memref<64x64xf32>
    }
  }

  return
}
```

You can find more information about this example from the Section 3.11
of [1].

In general, there are three types of dependences here: two flow
dependences, one in direction `(i, j) = (0, 1)` (notation that depicts a
vector in the 2D iteration space), one in `(i, j) = (1, -1)`; and one
anti dependence in the direction `(-1, 1)`.

Since two of them are along the diagonal in opposite directions, the
default tiling method in `affine`, which tiles the iteration space into
rectangles, will violate the legality condition proposed by Irigoin and
Triolet [2]. [2] implies two tiles cannot depend on each other, while in
the `affine` tiling case, two rectangles along the same diagonal are
indeed dependent, which simply violates the rule.

This diff attempts to put together a validator that checks whether the
rule from [2] is violated or not when applying the default tiling method
in `affine`.

The canonical way to perform such validation is by examining the effect
from adding the constraint from Irigoin and Triolet to the existing
dependence constraints.

Since we already have the prior knowlegde that `affine` tiles in a
hyper-rectangular way, and the resulting tiles will be scheduled in the
same order as their respective loop indices, we can simplify the
solution to just checking whether all dependence components are
non-negative along the tiling dimensions.

We put this algorithm into a new API called `checkTilingLegality` under
`LoopTiling.cpp`. This function iterates every `load`/`store` pair, and
if there is any dependence between them, we get the dependence component
  and check whether it has any negative component. This function returns
  `failure` if the legality condition is violated.

[1]. Bondhugula, Uday. Effective Automatic parallelization and locality optimization using the Polyhedral model. https://dl.acm.org/doi/book/10.5555/1559029
[2]. Irigoin, F. and Triolet, R. Supernode Partitioning. https://dl.acm.org/doi/10.1145/73560.73588

Differential Revision: https://reviews.llvm.org/D84882
2020-08-08 09:29:47 +05:30
Kazuaki Ishizaki 06b90586a4 [mlir]: NFC: Fix trivial typo in documents and comments
Differential Revision: https://reviews.llvm.org/D84400
2020-07-23 23:40:57 +09:00
Thomas Raoux 2f23270af9 [mlir] Support operations with multiple results in slicing
Right now slicing would assert if an operation with multiple results is in the
slice.

Differential Revision: https://reviews.llvm.org/D83627
2020-07-13 13:24:27 -07:00
Jeremy Bruestle 2ede891875 [MLIR] IR changes to add yield semantics for affine.if and affine.parallel
Reviewed By: bondhugula, flaub

Differential Revision: https://reviews.llvm.org/D82600
2020-07-09 12:12:42 -07:00
River Riddle 9db53a1827 [mlir][NFC] Remove usernames and google bug numbers from TODO comments.
These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
2020-07-07 01:40:52 -07:00
Arjun P 10a898b3ec [MLIR] Exact integer emptiness checks for FlatAffineConstraints
This patch adds the capability to perform exact integer emptiness checks for FlatAffineConstraints using the General Basis Reduction algorithm (GBR). Previously, only a heuristic was available for emptiness checks, which was not guaranteed to always give a conclusive result.

This patch adds a `Simplex` class, which can be constructed using a `FlatAffineConstraints`, and can find an integer sample point (if one exists) using the GBR algorithm. Additionally, it adds two classes `Matrix` and `Fraction`, which are used by `Simplex`.

The integer emptiness check functionality can be accessed through the new `FlatAffineConstraints::isIntegerEmpty()` function, which runs the existing heuristic first and, if that proves to be inconclusive, runs the GBR algorithm to produce a conclusive result.

Differential Revision: https://reviews.llvm.org/D80860
2020-07-02 19:53:27 +05:30
Rahul Joshi ee394e6842 [MLIR] Add variadic isa<> for Type, Value, and Attribute
- Also adopt variadic llvm::isa<> in more places.
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46445

Differential Revision: https://reviews.llvm.org/D82769
2020-06-29 15:04:48 -07:00
Rahul Joshi d891d738d9 [MLIR][NFC] Adopt variadic isa<>
Differential Revision: https://reviews.llvm.org/D82489
2020-06-24 17:02:44 -07:00
Uday Bondhugula 7965dd79a3 [MLIR] Fix memref region compute for 0-d memref accesses
Fix memref region compute for 0-d memref accesses in certain cases (when
there are loops surrounding such 0-d accesses).

Differential Revision: https://reviews.llvm.org/D81792
2020-06-16 13:59:53 +05:30
Nicolas Vasilache 6953cf6502 [mlir][Linalg] Add a hoistRedundantVectorTransfers helper function
This revision adds a helper function to hoist vector.transfer_read /
vector.transfer_write pairs out of immediately enclosing scf::ForOp
iteratively, if the following conditions are true:
   1. The 2 ops access the same memref with the same indices.
   2. All operands are invariant under the enclosing scf::ForOp.
   3. No uses of the memref either dominate the transfer_read or are
   dominated by the transfer_write (i.e. no aliasing between the write and
   the read across the loop)

To improve hoisting opportunities, call the `moveLoopInvariantCode` helper
function on the candidate loop above which to hoist. Hoisting the transfers
results in scf::ForOp yielding the value that originally transited through
memory.

This revision additionally exposes `moveLoopInvariantCode` as a helper in
LoopUtils.h and updates SliceAnalysis to support return scf::For values and
allow hoisting across multiple scf::ForOps.

Differential Revision: https://reviews.llvm.org/D81199
2020-06-05 06:50:24 -04:00
Diego Caballero e75325cfc3 [mlir][Affine] Minor clean-up of D79829
Addressing D79829 post-commit comments. Minor changes.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D80814
2020-05-29 14:39:18 -07:00
Diego Caballero a45fb1942f [mlir][Affine] Introduce affine memory interfaces
This patch introduces interfaces for read and write ops with affine
restrictions. I used `read`/`write` intead of `load`/`store` for the
interfaces so that they can also be implemented by dma ops.
For now, they are only implemented by affine.load, affine.store,
affine.vector_load and affine.vector_store.

For testing purposes, this patch also migrates affine loop fusion and
required analysis to use the new interfaces. No other changes are made
beyond that.

Co-authored-by: Alex Zinenko <zinenko@google.com>

Reviewed By: bondhugula, ftynse

Differential Revision: https://reviews.llvm.org/D79829
2020-05-19 17:32:50 -07:00
Stephen Neuendorffer 7a17f3ccd1 [MLIR] Fix dependencies for Analysis libraries
cmake does not truly support dependencies on automatically generated files
which are not in the same directory as the targets which depend on them.
It works with ninja, but doesn't work with make

This patch adds an explicit dependence so that all dialects are built
before the analysis libraries.

Differential Revision: https://reviews.llvm.org/D79805
2020-05-12 13:41:16 -07:00
Sean Silva 98eead8186 [mlir][Value] Add v.getDefiningOp<OpTy>()
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.

Differential Revision: https://reviews.llvm.org/D79681
2020-05-11 12:55:27 -07:00
Alex Zinenko c25b20c0f6 [mlir] NFC: Rename LoopOps dialect to SCF (Structured Control Flow)
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.

Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.

Differential Revision: https://reviews.llvm.org/D79578
2020-05-11 15:04:27 +02:00
Jacques Pienaar 5eae715a31 [mlir] Add NamedAttrList
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.

Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.

Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.

Fix bug in sorting helper function.

Differential Revision: https://reviews.llvm.org/D79463
2020-05-07 12:33:36 -07:00
Uday Bondhugula ca09dab303 [MLIR][NFC] Fix/update debug messages for analysis utils and affine fusion
Drop trailing period in debug messages. Add an extra line for fusion
debug info.

Differential Revision: https://reviews.llvm.org/D79471
2020-05-06 12:27:59 +05:30
Stephen Neuendorffer 5469f434bb [MLIR] Reapply: Adjust libMLIR building to more closely follow libClang
This reverts commit ab1ca6e60f.
2020-05-04 20:47:57 -07:00
River Riddle 1e4faf23ff [mlir][IR] Add a Region::getOps method that returns a range of immediately nested operations
This allows for walking the operations nested directly within a region, without traversing nested regions.

Differential Revision: https://reviews.llvm.org/D79056
2020-05-04 17:46:25 -07:00
Stephen Neuendorffer ab1ca6e60f Revert "[MLIR] Adjust libMLIR building to more closely follow libClang"
This reverts commit 4f0f436749.

This seems to show some compile dependence problems, and also breaks flang.
2020-05-04 12:40:12 -07:00
Valentin Churavy 4f0f436749 [MLIR] Adjust libMLIR building to more closely follow libClang
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so

After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.

This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.

Differential Revision: https://reviews.llvm.org/D78773

[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB

Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS.  This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary.  Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.

Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library.  Previously, some libraries still used
add_llvm_library.  However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM.  Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR

A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so.  To catch these errors more directly, there's now
mlir_check_all_link_libraries.

To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.

tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.

By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067

[MLIR] Move from using target_link_libraries to LINK_LIBS

This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.

By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243

Three commits have been squashed to avoid intermediate build breakage.
2020-05-04 11:40:46 -07:00
Stephen Neuendorffer 7add6b6b73 [MLIR] add dependencies for all tablegen targets on 'mlir-headers'
In cmake, dependencies on generated files require some sophistication in the build system.  At build time, files are parsed to determine which headers they depend on and these dependencies are injected into the build system.  This works well with ninja, but has some constraints with the makefile generator.  According to the cmake documentation, this only works reliably within the same directory.

This patch expands the usage of mlir-headers to include all generated headers and adds an mlir-generic-headers target which triggers generation of dialect-independent headers.  These targets are used to express dependencies on generated headers.  This is mostly handled in AddMLIR.cmake and only a few CMakeLists.txt files need to change.

Differential Revision: https://reviews.llvm.org/D79242
2020-05-01 20:08:52 -07:00