Commit Graph

165 Commits

Author SHA1 Message Date
Serge Pavlov 4d20e31f73 [FPEnv] Intrinsic llvm.roundeven
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.

Differential Revision: https://reviews.llvm.org/D75670
2020-05-26 19:24:58 +07:00
Arthur Eubanks 8a88755610 Reland [X86] Codegen for preallocated
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.

In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.

This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.

The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.

The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.

Force any function containing a preallocated call to use the frame
pointer.

Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.

Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).

Aside from the tests added here, I checked that this codegen produces
correct code for something like

```
struct A {
        A();
        A(A&&);
        ~A();
};

void bar() {
        foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```

by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.

Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77689
2020-05-20 11:25:44 -07:00
Arthur Eubanks b8cbff51d3 Revert "[X86] Codegen for preallocated"
This reverts commit 810567dc69.

Some tests are unexpectedly passing
2020-05-20 10:04:55 -07:00
Arthur Eubanks 810567dc69 [X86] Codegen for preallocated
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.

In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.

This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.

The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.

The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.

Force any function containing a preallocated call to use the frame
pointer.

Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.

Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).

Aside from the tests added here, I checked that this codegen produces
correct code for something like

```
struct A {
        A();
        A(A&&);
        ~A();
};

void bar() {
        foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```

by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77689
2020-05-20 09:20:38 -07:00
Craig Topper 9f7d4150b9 [X86] Move combineLoopMAddPattern and combineLoopSADPattern to an IR pass before SelecitonDAG.
These transforms rely on a vector reduction flag on the SDNode
set by SelectionDAGBuilder. This flag exists because SelectionDAG
can't see across basic blocks so SelectionDAGBuilder is looking
across and saving the info. X86 is the only target that uses this
flag currently. By removing the X86 code we can remove the flag
and the SelectionDAGBuilder code.

This pass adds a dedicated IR pass for X86 that looks across the
blocks and transforms the IR into a form that the X86 SelectionDAG
can finish.

An advantage of this new approach is that we can enhance it to
shrink the phi nodes and final reduction tree based on the zeroes
that we need to concatenate to bring the partially reduced
reduction back up to the original width.

Differential Revision: https://reviews.llvm.org/D76649
2020-03-26 14:10:20 -07:00
Juneyoung Lee 7802be4a3d [SelDag] Add FREEZE
Summary:
- Add FREEZE node to SelDag
- Lower FreezeInst (in IR) to FREEZE node
- Add Legalization for FREEZE node

Reviewers: qcolombet, bogner, efriedma, lebedev.ri, nlopes, craig.topper, arsenm

Reviewed By: lebedev.ri

Subscribers: wdng, xbolva00, Petar.Avramovic, liuz, lkail, dylanmckay, hiraditya, Jim, arsenm, craig.topper, RKSimon, spatel, lebedev.ri, regehr, trentxintong, nlopes, mkuper, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D29014
2020-03-24 23:04:58 +09:00
Bevin Hansson 6e561d1c94 [Intrinsic] Add fixed point saturating division intrinsics.
Summary:
This patch adds intrinsics and ISelDAG nodes for signed
and unsigned fixed-point division:

```
llvm.sdiv.fix.sat.*
llvm.udiv.fix.sat.*
```

These intrinsics perform scaled, saturating division
on two integers or vectors of integers. They are
required for the implementation of the Embedded-C
fixed-point arithmetic in Clang.

Reviewers: bjope, leonardchan, craig.topper

Subscribers: hiraditya, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71550
2020-02-24 10:50:52 +01:00
Craig Topper 0daf9b8e41 [X86][LegalizeTypes] Add SoftPromoteHalf support STRICT_FP_EXTEND and STRICT_FP_ROUND
This adds a strict version of FP16_TO_FP and FP_TO_FP16 and uses
them to implement soft promotion for the half type. This is
enough to provide basic support for __fp16 with strictfp.

Add the necessary X86 support to use VCVTPS2PH/VCVTPH2PS when F16C
is enabled.
2020-02-11 22:30:04 -08:00
Benjamin Kramer adcd026838 Make llvm::StringRef to std::string conversions explicit.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.

This doesn't actually modify StringRef yet, I'll do that in a follow-up.
2020-01-28 23:25:25 +01:00
Sander de Smalen 67d4c9924c Add support for (expressing) vscale.
In LLVM IR, vscale can be represented with an intrinsic. For some targets,
this is equivalent to the constexpr:

  getelementptr <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1

This can be used to propagate the value in CodeGenPrepare.

In ISel we add a node that can be legalized to one or more
instructions to materialize the runtime vector length.

This patch also adds SVE CodeGen support for VSCALE, which maps this
node to RDVL instructions (for scaled multiples of 16bytes) or CNT[HSD]
instructions (scaled multiples of 2, 4, or 8 bytes, respectively).

Reviewers: rengolin, cameron.mcinally, hfinkel, sebpop, SjoerdMeijer, efriedma, lattner

Reviewed by: efriedma

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68203
2020-01-22 10:09:27 +00:00
Peng Guo cfd8498401 [MIR] Fix cyclic dependency of MIR formatter
Summary:
Move MIR formatter pointer from TargetMachine to TargetInstrInfo to
avoid cyclic dependency between target & codegen.

Reviewers: dsanders, bkramer, arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72485
2020-01-10 11:18:12 +01:00
Daniel Sanders de3d0ee023 Revert "Revert "[MIR] Target specific MIR formating and parsing""
There was an unguarded dereference of MF in a function that permitted
nullptr. Fixed

This reverts commit 71d64f72f9.
2020-01-08 20:03:29 -08:00
Nico Weber 71d64f72f9 Revert "[MIR] Target specific MIR formating and parsing"
This reverts commit 3ef05d85be.
It broke check-llvm on many bots, see comments on D69836.
2020-01-08 22:50:49 -05:00
Peng Guo 3ef05d85be [MIR] Target specific MIR formating and parsing
Summary:
Added MIRFormatter for target specific MIR formating and parsing with
immediate and custom pseudo source values. Target machine can subclass
MIRFormatter and implement custom logic for printing and parsing
immediate and custom pseudo source values for better readability.

* Target specific immediate mnemonic need to start with "." follows by
  identifier string. When MIR parser sees immediate it will call target
  specific parsing function.

* Custom pseudo source value need to start with custom follows by
  double-quoted string. MIR parser will pass the quoted string to target
  specific PSV parsing function.

* MIRFormatter have 2 helper functions to facilitate LLVM value printing
  and parsing for custom PSV if they refers LLVM values.

Patch by Peng Guo

Reviewers: dsanders, arsenm

Reviewed By: dsanders

Subscribers: wdng, jvesely, nhaehnle, hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69836
2020-01-08 18:48:02 -08:00
Daniel Sanders 5ab6fa7b70 Revert "[MIR] Target specific MIR formating and parsing"
Forgot to credit Peng in the commit message.

This reverts commit be841f89d0.
2020-01-08 18:48:02 -08:00
Peng Guo be841f89d0 [MIR] Target specific MIR formating and parsing
Summary:
Added MIRFormatter for target specific MIR formating and parsing with
immediate and custom pseudo source values. Target machine can subclass
MIRFormatter and implement custom logic for printing and parsing
immediate and custom pseudo source values for better readability.

* Target specific immediate mnemonic need to start with "." follows by
  identifier string. When MIR parser sees immediate it will call target
  specific parsing function.

* Custom pseudo source value need to start with custom follows by
  double-quoted string. MIR parser will pass the quoted string to target
  specific PSV parsing function.

* MIRFormatter have 2 helper functions to facilitate LLVM value printing
  and parsing for custom PSV if they refers LLVM values.

Reviewers: dsanders, arsenm

Reviewed By: dsanders

Subscribers: wdng, jvesely, nhaehnle, hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69836
2020-01-08 18:34:21 -08:00
Bevin Hansson 8e2b44f7e0 [Intrinsic] Add fixed point division intrinsics.
Summary:
This patch adds intrinsics and ISelDAG nodes for
signed and unsigned fixed-point division:

  llvm.sdiv.fix.*
  llvm.udiv.fix.*

These intrinsics perform scaled division on two
integers or vectors of integers. They are required
for the implementation of the Embedded-C fixed-point
arithmetic in Clang.

Patch by: ebevhan

Reviewers: bjope, leonardchan, efriedma, craig.topper

Reviewed By: craig.topper

Subscribers: Ka-Ka, ilya, hiraditya, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70007
2020-01-08 15:17:46 +01:00
Ulrich Weigand 63336795f0 [FPEnv] Default NoFPExcept SDNodeFlag to false
The NoFPExcept bit in SDNodeFlags currently defaults to true, unlike all
other such flags. This is a problem, because it implies that all code that
transforms SDNodes without copying flags can introduce a correctness bug,
not just a missed optimization.

This patch changes the default to false. This makes it necessary to move
setting the (No)FPExcept flag for constrained intrinsics from the
visitConstrainedIntrinsic routine to the generic visit routine at the
place where the other flags are set, or else the intersectFlagsWith
call would erase the NoFPExcept flag again.

In order to avoid making non-strict FP code worse, whenever
SelectionDAGISel::SelectCodeCommon matches on a set of orignal nodes
none of which can raise FP exceptions, it will preserve this property
on all results nodes generated, by setting the NoFPExcept flag on
those result nodes that would otherwise be considered as raising
an FP exception.

To check whether or not an SD node should be considered as raising
an FP exception, the following logic applies:

- For machine nodes, check the mayRaiseFPException property of
  the underlying MI instruction
- For regular nodes, check isStrictFPOpcode
- For target nodes, check a newly introduced isTargetStrictFPOpcode

The latter is implemented by reserving a range of target opcodes,
similarly to how memory opcodes are identified. (Note that there a
bit of a quirk in identifying target nodes that are both memory nodes
and strict FP nodes. To simplify the logic, right now all target memory
nodes are automatically also considered strict FP nodes -- this could
be fixed by adding one more range.)

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D71841
2020-01-02 16:59:45 +01:00
Ulrich Weigand 1946461344 [FPEnv] Strict versions of llvm.minimum/llvm.maximum
Add new intrinsics
   llvm.experimental.constrained.minimum
   llvm.experimental.constrained.maximum
as strict versions of llvm.minimum and llvm.maximum.

Includes SystemZ back-end support.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D71624
2019-12-18 21:35:28 +01:00
Kevin P. Neal b1d8576b0a This adds constrained intrinsics for the signed and unsigned conversions
of integers to floating point.

This includes some of Craig Topper's changes for promotion support from
D71130.

Differential Revision: https://reviews.llvm.org/D69275
2019-12-17 10:06:51 -05:00
Craig Topper 4e48513b47 [SelectionDAG] Add the fpexcept flag to the SelectionDAG dumping output so we can better see when its not propagating.
We're currently losing this flag in type legalization and probably
other places when we expand strict fp nodes. This will make
reading logs easier.
2019-12-16 18:05:11 -08:00
Ulrich Weigand 9db13b5a7d [FPEnv] Constrained FCmp intrinsics
This adds support for constrained floating-point comparison intrinsics.

Specifically, we add:

      declare <ty2>
      @llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
                                          metadata <condition code>,
                                          metadata <exception behavior>)
      declare <ty2>
      @llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
                                           metadata <condition code>,
                                           metadata <exception behavior>)

The first variant implements an IEEE "quiet" comparison (i.e. we only
get an invalid FP exception if either argument is a SNaN), while the
second variant implements an IEEE "signaling" comparison (i.e. we get
an invalid FP exception if either argument is any NaN).

The condition code is implemented as a metadata string.  The same set
of predicates as for the fcmp instruction is supported (except for the
"true" and "false" predicates).

These new intrinsics are mapped by SelectionDAG codegen onto two new
ISD opcodes, ISD::STRICT_FSETCC and ISD::STRICT_FSETCCS, again
representing quiet vs. signaling comparison operations.  Otherwise
those nodes look like SETCC nodes, with an additional chain argument
and result as usual for strict FP nodes.  The patch includes support
for the common legalization operations for those nodes.

The patch also includes full SystemZ back-end support for the new
ISD nodes, mapping them to all available SystemZ instruction to
fully implement strict semantics (scalar and vector).

Differential Revision: https://reviews.llvm.org/D69281
2019-12-07 11:28:39 +01:00
David Green b5315ae8ff [Codegen][ARM] Add addressing modes from masked loads and stores
MVE has a basic symmetry between it's normal loads/store operations and
the masked variants. This means that masked loads and stores can use
pre-inc and post-inc addressing modes, just like the standard loads and
stores already do.

To enable that, this patch adds all the relevant infrastructure for
treating masked loads/stores addressing modes in the same way as normal
loads/stores.

This involves:
- Adding an AddressingMode to MaskedLoadStoreSDNode, along with an extra
   Offset operand that is added after the PtrBase.
- Extending the IndexedModeActions from 8bits to 16bits to store the
   legality of masked operations as well as normal ones. This array is
   fairly small, so doubling the size still won't make it very large.
   Offset masked loads can then be controlled with
   setIndexedMaskedLoadAction, similar to standard loads.
- The same methods that combine to indexed loads, such as
   CombineToPostIndexedLoadStore, are adjusted to handle masked loads in
   the same way.
- The ARM backend is then adjusted to make use of these indexed masked
   loads/stores.
- The X86 backend is adjusted to hopefully be no functional changes.

Differential Revision: https://reviews.llvm.org/D70176
2019-11-26 16:21:01 +00:00
Graham Hunter 84da2596f9 [AArch64][SVE] Add SPLAT_VECTOR ISD Node
Adds a new ISD node to replicate a scalar value across all elements of
a vector. This is needed for scalable vectors, since BUILD_VECTOR cannot
be used.

Fixes up default type legalization for scalable vectors after the
new MVT type ranges were introduced.

At present I only use this node for scalable vectors. A DAGCombine has
been added to transform a BUILD_VECTOR into a SPLAT_VECTOR if all
elements are the same, but only if the default operation action of
Expand has been overridden by the target.

I've only added result promotion legalization for scalable vector
i8/i16/i32/i64 types in AArch64 for now.

Reviewers: t.p.northover, javed.absar, greened, cameron.mcinally, jmolloy

Reviewed By: jmolloy

Differential Revision: https://reviews.llvm.org/D47775

llvm-svn: 375222
2019-10-18 11:48:35 +00:00
Kevin P. Neal 1c3d19c82d [FPEnv] Add constrained intrinsics for lrint and lround
Earlier in the year intrinsics for lrint, llrint, lround and llround were
added to llvm. The constrained versions are now implemented here.

Reviewed by:	andrew.w.kaylor, craig.topper, cameron.mcinally
Approved by:	craig.topper
Differential Revision:	https://reviews.llvm.org/D64746

llvm-svn: 373900
2019-10-07 13:20:00 +00:00
Craig Topper 5ebd0a6e88 [SelectionDAG] Remove ISD::FP_ROUND_INREG
I don't think anything in tree creates this node. So all of this
code appears to be dead.

Code coverage agrees
http://lab.llvm.org:8080/coverage/coverage-reports/llvm/coverage/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp.html

Differential Revision: https://reviews.llvm.org/D67312

llvm-svn: 371431
2019-09-09 17:54:44 +00:00
Bjorn Pettersson 5e331e4ce8 [Intrinsic] Add the llvm.umul.fix.sat intrinsic
Summary:
Add an intrinsic that takes 2 unsigned integers with
the scale of them provided as the third argument and
performs fixed point multiplication on them. The
result is saturated and clamped between the largest and
smallest representable values of the first 2 operands.

This is a part of implementing fixed point arithmetic
in clang where some of the more complex operations
will be implemented as intrinsics.

Patch by: leonardchan, bjope

Reviewers: RKSimon, craig.topper, bevinh, leonardchan, lebedev.ri, spatel

Reviewed By: leonardchan

Subscribers: ychen, wuzish, nemanjai, MaskRay, jsji, jdoerfert, Ka-Ka, hiraditya, rjmccall, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D57836

llvm-svn: 371308
2019-09-07 12:16:14 +00:00
Kevin P. Neal ddf13c00ed [FPEnv] Add fptosi and fptoui constrained intrinsics.
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.

Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.

Reviewed by:	Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by:	Craig Topper
Differential Revision:	http://reviews.llvm.org/D63782

llvm-svn: 370228
2019-08-28 16:33:36 +00:00
Adhemerval Zanella 6d7bf5e8df [CodeGen] Add lrint/llrint builtins
This patch add the ISD::LRINT and ISD::LLRINT along with new
intrinsics.  The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.

The idea is to optimize lrint/llrint generation for AArch64
in a subsequent patch.  Current semantic is just route it to libm
symbol.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D62017

llvm-svn: 361875
2019-05-28 20:47:44 +00:00
Leonard Chan 0bada7ce6c [Intrinsic] Signed Fixed Point Saturation Multiplication Intrinsic
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them. The
result is saturated and clamped between the largest and smallest representable
values of the first 2 operands.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D55720

llvm-svn: 361289
2019-05-21 19:17:19 +00:00
Adhemerval Zanella 73643b5041 [CodeGen] Add lround/llround builtins
This patch add the ISD::LROUND and ISD::LLROUND along with new
intrinsics.  The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.

The idea is to optimize lround/llround generation for AArch64
in a subsequent patch.  Current semantic is just route it to libm
symbol.

llvm-svn: 360889
2019-05-16 13:15:27 +00:00
Reid Kleckner 4882490349 [codeview] Fix SDNode representation of annotation labels
Before this change, they were erroneously constructed with the EH_LABEL
SDNode opcode, which caused other passes to interact with them in
incorrect ways. See the FIXME about fastisel that this addresses in the
existing test case.

Fixes PR41890

llvm-svn: 360818
2019-05-15 21:46:05 +00:00
Kevin P. Neal 5987749e33 Add constrained fptrunc and fpext intrinsics.
The new fptrunc and fpext intrinsics are constrained versions of the
regular fptrunc and fpext instructions.

Reviewed by:	Andrew Kaylor, Craig Topper, Cameron McInally, Conner Abbot
Approved by:	Craig Topper
Differential Revision: https://reviews.llvm.org/D55897

llvm-svn: 360581
2019-05-13 13:23:30 +00:00
Clement Courbet a0321c23e8 Re-land part of r354244 "[DAGCombiner] Eliminate dead stores to stack."
This part introduces the lifetime node.

llvm-svn: 354578
2019-02-21 12:59:36 +00:00
Clement Courbet 292291fb90 Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
Breaks some bots.

llvm-svn: 354245
2019-02-18 08:24:29 +00:00
Clement Courbet 57f34dbd3e [DAGCombiner] Eliminate dead stores to stack.
Summary:
A store to an object whose lifetime is about to end can be removed.

See PR40550 for motivation.

Reviewers: niravd

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D57541

llvm-svn: 354244
2019-02-18 07:59:01 +00:00
Craig Topper 784929d045 Implementation of asm-goto support in LLVM
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html

This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.

This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.

There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.

Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii

Differential Revision: https://reviews.llvm.org/D53765

llvm-svn: 353563
2019-02-08 20:48:56 +00:00
Leonard Chan 68d428e578 [Intrinsic] Unsigned Fixed Point Multiplication Intrinsic
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D55625

llvm-svn: 353059
2019-02-04 17:18:11 +00:00
Craig Topper 1e718429c1 [X86] Update SelectionDAGDumper to print the extension type and expanding flag for masked loads. Add truncating and compressing for masked stores.
llvm-svn: 352029
2019-01-24 07:51:34 +00:00
Matt Arsenault a5840c3c39 Codegen support for atomicrmw fadd/fsub
llvm-svn: 351851
2019-01-22 18:36:06 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Bjorn Pettersson d4023bd2cb [SelectionDAG] Updates for -dag-dump-verbose
Summary:
This patch makes some changes related to -dag-dump-verbose.
Main use case has been when debugging how SelectionDAG is
dealing with debug info (SDDbgValue nodes).

1) We now print the number of DbgValues that are mapped to each
   SDNode.
2) Removed duplicated printing of DebugLoc (nowadays DebugLoc is
   printed also when not using -dag-dump-verbose).
3) Renamed SDDbgValue::dump to SDDbgValue::print, and added a
   new SDDbgValue::dump that will start a new line after calling
   print.
4) SDDbgValue::print now prints "Order", and it also prints
   some additional information when kind is CONST/FRAMEIX/VREG.
5) SelectionDAG::dump() now dumps all SDDbgValue nodes after
   the list of SDNodes (both "regular" and "ByVal" SDDbgValue:s).
   Invalidated nodes are not printed.
6) Prohibit inline printing of SDNode operands that has SDDbgValue
   nodes associated to them.

Reviewers: jmorse, aprantl

Reviewed By: aprantl

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D56793

llvm-svn: 351581
2019-01-18 20:06:13 +00:00
Leonard Chan 118e53fd63 [Intrinsic] Signed Fixed Point Multiplication Intrinsic
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D54719

llvm-svn: 348912
2018-12-12 06:29:14 +00:00
Simon Pilgrim 180639afe5 [SelectionDAG] Initial support for FSHL/FSHR funnel shift opcodes (PR39467)
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.

Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.

Differential Revision: https://reviews.llvm.org/D54698

llvm-svn: 348353
2018-12-05 11:12:12 +00:00
Cameron McInally 9757d5d6c1 [FPEnv] Add constrained CEIL/FLOOR/ROUND/TRUNC intrinsics
Differential Revision: https://reviews.llvm.org/D53411

llvm-svn: 346141
2018-11-05 15:59:49 +00:00
Mandeep Singh Grang 547a0d765a [COFF, ARM64] Implement Intrinsic.sponentry for AArch64
Summary: This patch adds Intrinsic.sponentry. This intrinsic is required to correctly support setjmp for AArch64 Windows platform.

Patch by: Yin Ma (yinma@codeaurora.org)

Reviewers: mgrang, ssijaric, eli.friedman, TomTan, mstorsjo, rnk, compnerd, efriedma

Reviewed By: efriedma

Subscribers: efriedma, javed.absar, kristof.beyls, chrib, llvm-commits

Differential Revision: https://reviews.llvm.org/D53996

llvm-svn: 345909
2018-11-01 23:22:25 +00:00
Mandeep Singh Grang b0cdf56dd7 Revert "[COFF, ARM64] Implement Intrinsic.sponentry for AArch64"
This reverts commit 585b6667b4712e3c7f32401e929855b3313b4ff2.

llvm-svn: 345863
2018-11-01 17:53:57 +00:00
Mandeep Singh Grang 88ad9ac720 [COFF, ARM64] Implement Intrinsic.sponentry for AArch64
Summary: This patch adds Intrinsic.sponentry. This intrinsic is required to correctly support setjmp for AArch64 Windows platform.

Reviewers: mgrang, TomTan, rnk, compnerd, mstorsjo, efriedma

Reviewed By: efriedma

Subscribers: majnemer, chrib, javed.absar, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D53673

llvm-svn: 345791
2018-10-31 23:16:20 +00:00
Cameron McInally 2ad870e785 [FPEnv] [FPEnv] Add constrained intrinsics for MAXNUM and MINNUM
Differential Revision: https://reviews.llvm.org/D53216

llvm-svn: 345650
2018-10-30 21:01:29 +00:00
Leonard Chan 905abe5b5d [Intrinsic] Signed and Unsigned Saturation Subtraction Intirnsics
Add an intrinsic that takes 2 integers and perform saturation subtraction on
them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53783

llvm-svn: 345512
2018-10-29 16:54:37 +00:00