This extends PerformSplittingToWideningLoad to also handle FP_Ext, as
well as sign and zero extends. It uses an integer extending load
followed by a VCVTL on the bottom lanes to efficiently perform an fpext
on a smaller than legal type.
The existing code had to be rewritten a little to not just split the
node in two and let legalization handle it from there, but to actually
split into legal chunks.
Differential Revision: https://reviews.llvm.org/D81340
This adds code to lower f16 to f32 fp_exts's using an MVE VCVT
instructions, similar to a recent similar patch for fp_trunc. Again it
goes through the lowering of a BUILD_VECTOR, but is slightly simpler
only having to deal with interleaved indices. It adds a VCVTL node to
lower to, similar to VCVTN.
Differential Revision: https://reviews.llvm.org/D81339
This splits MVE vector stores of a fp_trunc in the same way that we do
for standard trunc's. It extends PerformSplittingToNarrowingStores to
handle fp_round, splitting the store into pieces and adding a VCVTNb to
perform the actual fp_round. The actual store is then converted to an
integer store so that it can truncate bottom lanes of the result.
Differential Revision: https://reviews.llvm.org/D81141
This adds code to lower f32 to f16 fp_trunc's using a pair of MVE VCVT
instructions. Due to v4f16 not being legal, fp_round are often split up
fairly early. So this reconstructs the vcvt's from a buildvector of
fp_rounds from two vector inputs. Something like:
BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
FP_ROUND(EXTRACT_ELT(Y, 0),
FP_ROUND(EXTRACT_ELT(X, 1),
FP_ROUND(EXTRACT_ELT(Y, 1), ...)
It adds a VCVTN node to handle this, which like VMOVN or VQMOVN lowers
into the top/bottom lanes of an MVE instruction.
Differential Revision: https://reviews.llvm.org/D81139