We don't have a good way to detect most situations where
DS offsets are usable on SI, so add an option to force using
them even if unsafe for debugging performance problems.
llvm-svn: 241462
These are mostly from the chart in the SparcV8 spec, section "A.3
Synthetic Instructions".
Differential Revision: http://reviews.llvm.org/D9834
llvm-svn: 241461
The code in AArch64A57FPLoadBalancing::scavengeRegister() to handle dead defs
was not correctly handling aliased registers. E.g. if the dead def was of D2,
then S2 was not being marked as unavailable, so it could potentially be used
across a live-range in which it would be clobbered.
Patch by Geoff Berry <gberry@codeaurora.org>!
Phabricator: http://reviews.llvm.org/D10900
llvm-svn: 241449
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
Correctly support assembling "pushw $imm8" on x86-64 targets.
Also some cleanup of the PUSH instructions (PUSH64i16 and PUSHi16 actually
represent the same instruction)
This fixes PR23996
Patch by: david.l.kreitzer@intel.com
Differential Revision: http://reviews.llvm.org/D10878
llvm-svn: 241404
Followup to D10433 and D10589 that fixes i8/i16 uint2fp vector conversions by zero extending to i32 and using the sint2fp path (unless the target does actually support uint2fp).
llvm-svn: 241394
Add support for v2i8/v2i16 to v2f64 by using a sign extension to v2i32 before conversion to v2f64.
Differential Revision: http://reviews.llvm.org/D10589
llvm-svn: 241325
This patch adds support for sign extension for sub 128-bit vectors, such as to v2i32. It concatenates with UNDEF subvectors up to 128-bits, performs the sign extension (i.e. as v4i32) and then extracts the target subvector.
Patch 1/2 of D10589 - the second patch covers the conversion of v2i8/v2i16 to v2f64.
llvm-svn: 241323
This function can really fail since the string table offset can be out of
bounds.
Using ErrorOr makes sure the error is checked.
Hopefully a lot of the boilerplate code in tools/* can go away once we have
a diagnostic manager in Object.
llvm-svn: 241297
In r241285, I removed the SUBREG_TO_REG restriction from VSX swap
removal, determining that this was overly conservative. We have
another form of the same restriction in that we check for the presence
of implicit subregs in vector operations. As with SUBREG_TO_REG for
partial register conversions, an implicit subreg is safe in and of
itself, provided no other operation makes a lane-sensitive assumption
about the result. This patch removes that restriction, by removing
the HasImplicitSubreg flag and all code that relies on it.
I've added a test case that fails to optimize before this patch is
applied, and optimizes properly with the patch. Test based on a
report from Anton Blanchard.
llvm-svn: 241290
With a previous patch, the VSX swap optimization is able to recognize
the doubleword load-splat idiom that can be implemented using lxvdsx.
However, that does not cover a doubleword splat where the source is a
register. We can implement this using xxspltd (a special form of
xxpermdi). This patch teaches the swap optimization pass about this
idiom.
As a prerequisite, it also permits swap optimization to succeed for
all forms of SUBREG_TO_REG. Previously we were conservative and only
allowed SUBREG_TO_REG when it copied a full register. However, on
reflection any form of SUBREG_TO_REG is safe in and of itself, so long
as an unsafe operation is not performed on its result. In particular,
a widening SUBREG_TO_REG often occurs as an input to a doubleword
splat idiom, particularly in auto-vectorized code.
The doubleword splat idiom is an XXPERMDI operation where both source
registers are identical, and the selection mask is either 0 (splat the
first element) or 3 (splat the second element). To determine whether
the registers are identical, we use the existing mechanism for looking
through "copy-like" operations. That mechanism has a side effect of
marking the XXPERMDI operation as using a physical register, which
would invalidate its presence in a swap-optimized region. This is
correct for the form of XXPERMDI that performs a swap and hence would
be removed, but is not what we want for a doubleword-splat variety of
XXPERMDI. Therefore we reset the physical-register flag on the
XXPERMDI when it represents a splat.
A simple test case is added to verify that we generate the splat and
that we also remove the xxswapd instructions that would otherwise be
associated with the load and store of another operand.
llvm-svn: 241285
This checks subtarget feature compatibility for inlining by verifying
that the callee is a strict subset of the caller's features. This includes
the cpu as part of the subtarget we can get via the incoming functions as
the backend takes CPUs as feature sets.
This allows us to inline things like:
int foo() { return baz(); }
int __attribute__((target("sse4.2"))) bar() {
return foo();
}
so that generic code can be inlined into specialized functions.
llvm-svn: 241221
Summary:
* Add 64-bit address space feature.
* Rename SIMD feature to SIMD128.
* Handle single-thread model with an IR pass (same way ARM does).
* Rename generic processor to MVP, to follow design's lead.
* Add bleeding-edge processors, with all features included.
* Fix a few DEBUG_TYPE to match other backends.
Test Plan: ninja check
Reviewers: sunfish
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D10880
llvm-svn: 241211
Summary:
According to PTX ISA:
For convenience, ld, st, and cvt instructions permit source and destination data operands to be wider than the instruction-type size, so that narrow values may be loaded, stored, and converted using regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit registers when being loaded, stored, or converted to other types and sizes. The operand type checking rules are relaxed for bit-size and integer (signed and unsigned) instruction types; floating-point instruction types still require that the operand type-size matches exactly, unless the operand is of bit-size type.
So, the ISA does not support load with extending/store with truncatation for floating numbers. This is reflected in setting the loadext/truncstore actions to expand in the code for floating numbers, but vectors of floating numbers are not taken care of.
As a result, loading a vector of floats followed by a fp_extend may be combined by DAGCombiner to a extload, and the extload may be lowered to NVPTXISD::LoadV2 with extending information. However, NVPTXISD::LoadV2 does not perform extending, and no extending instructions are inserted. Finally, PTX instructions with mismatched types are generated, like
ld.v2.f32 {%fd3, %fd4}, [%rd2]
This patch adds the correct actions for vectors of floats, so DAGCombiner would not create loads with extending, and correct code is generated.
Patched by Gang Hu.
Test Plan: Test case attached.
Reviewers: jingyue
Reviewed By: jingyue
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D10876
llvm-svn: 241191
Summary:
Offset of frame index is calculated by NVPTXPrologEpilogPass. Before
that the correct offset of stack objects cannot be obtained, which
leads to wrong offset if there are more than 2 frame objects. This patch
move NVPTXPeephole after NVPTXPrologEpilogPass. Because the frame index
is already replaced by %VRFrame in NVPTXPrologEpilogPass, we check
VRFrame register instead, and try to remove the VRFrame if there
is no usage after NVPTXPeephole pass.
Patched by Xuetian Weng.
Test Plan:
Strengthened test/CodeGen/NVPTX/local-stack-frame.ll to check the
offset calculation based on SP and SPL.
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10853
llvm-svn: 241185
When adding little-endian vector support for PowerPC last year, I
inadvertently disabled an optimization that recognizes a load-splat
idiom and generates the lxvdsx instruction. This patch moves the
offending logic so lxvdsx is once again generated.
This pattern is frequently generated by the vectorizer for scalar
loads of an effective constant. Previously the lxvdsx instruction was
wrongly listed as lane-sensitive for the VSX swap optimization (since
both doublewords are identical, swaps are safe). This patch fixes
this as well, so that vectorized code using lxvdsx can now have swaps
removed from the computation.
There is an existing test (@test50) in test/CodeGen/PowerPC/vsx.ll
that checks for the missing optimization. However, vsx.ll was only
being tested for POWER7 with big-endian code generation. I've added
a little-endian RUN statement and expected LE code generation for all
the tests in vsx.ll to give us a bit better VSX coverage, including
what's needed for this patch.
llvm-svn: 241183
The EH code might have been deleted as unreachable and the personality
pruned while the filter is still present. Currently I'm hitting this at
-O0 due to the clang bug PR24009.
llvm-svn: 241170
This patch teaches the AsmParser to accept add/adds/sub/subs/cmp/cmn
with a negative immediate operand and convert them as shown:
add Rd, Rn, -imm -> sub Rd, Rn, imm
sub Rd, Rn, -imm -> add Rd, Rn, imm
adds Rd, Rn, -imm -> subs Rd, Rn, imm
subs Rd, Rn, -imm -> adds Rd, Rn, imm
cmp Rn, -imm -> cmn Rn, imm
cmn Rn, -imm -> cmp Rn, imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers (gas). They are documented in the "ARMv8 Instruction Set
Overview", in the "Arithmetic (immediate)" section. This makes llvm-mc
a programmer-friendly assembler !
This also fixes PR20978: "Assembly handling of adding negative numbers
not as smart as gas".
llvm-svn: 241166
Move some instructions into order of sections in the spec, as the rest
already were.
Differential Revision: http://reviews.llvm.org/D9102
llvm-svn: 241163
Only consider an instruction a candidate for relaxation if the last operand of the
instruction is an expression. We previously checked whether any operand is an expression,
which is useless, since for all instructions concerned, the only operand that may be
affected by relaxation is the last one.
In addition, this removes the check for having RIP as an argument, since it was
plain wrong - even when one of the arguments is RIP, relaxation may still be needed.
This fixes PR9807.
Patch by: david.l.kreitzer@intel.com
Differential Revision: http://reviews.llvm.org/D10766
llvm-svn: 241152
The incoming EBP value established by the runtime is actually a pointer
to the end of the EH registration object, and not the true parent
function frame pointer. Clang doesn't need llvm.x86.seh.exceptioninfo
anymore because we know that the exception info pointer is at a fixed
offset from this incoming EBP.
The llvm.x86.seh.recoverfp intrinsic takes an EBP value provided by the
EH runtime and returns a pointer that is usable with llvm.framerecover.
The llvm.x86.seh.restoreframe intrinsic is inserted by the 32-bit
specific preparation pass in blocks targetted by the EH runtime. It
re-establishes any physical registers used by the parent function to
address the stack, such as the frame, base, and stack pointers.
Neither of these intrinsics correctly handle stack realignment prologues
yet, but it's possible to add that later.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D10848
llvm-svn: 241125
Summary:
Really check if %SP is not used in other places, instead of checking only exact
one non-dbg use.
Patched by Xuetian Weng.
Test Plan:
@foo4 in test/CodeGen/NVPTX/local-stack-frame.ll, create a case that
SP will appear twice.
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: llvm-commits, sfantao, jholewinski
Differential Revision: http://reviews.llvm.org/D10844
llvm-svn: 241099
Duplicating an FP register "as itself" is a bad idea, since it violates the
invariant that every FP register is mapped to at most one FPU stack slot.
Use the scratch FP register instead.
This fixes PR23957.
llvm-svn: 241069
These directives are used to set the default value of the SoftFloat feature.
They have the same effect as setting -m{soft, hard}-float from the command line.
Differential Revision: http://reviews.llvm.org/D9073
llvm-svn: 241066
represented by uint64_t, this patch replaces these
usages with the FeatureBitset (std::bitset) type.
Differential Revision: http://reviews.llvm.org/D10542
llvm-svn: 241058
Realistically, this will be returning ErrorOr for some time as refactoring the
user code to check once per section will take some time.
Given that, use it for checking if a relocation has addend or not.
While at it, add ELFRelocationRef to simplify the users.
llvm-svn: 241028
This change unifies how LTOModule and the backend obtain linker flags
for globals: via a new TargetLoweringObjectFile member function named
emitLinkerFlagsForGlobal. A new function LTOModule::getLinkerOpts() returns
the list of linker flags as a single concatenated string.
This change affects the C libLTO API: the function lto_module_get_*deplibs now
exposes an empty list, and lto_module_get_*linkeropts exposes a single element
which combines the contents of all observed flags. libLTO should never have
tried to parse the linker flags; it is the linker's job to do so. Because
linkers will need to be able to parse flags in regular object files, it
makes little sense for libLTO to have a redundant mechanism for doing so.
The new API is compatible with the old one. It is valid for a user to specify
multiple linker flags in a single pragma directive like this:
#pragma comment(linker, "/defaultlib:foo /defaultlib:bar")
The previous implementation would not have exposed
either flag via lto_module_get_*deplibs (as the test in
TargetLoweringObjectFileCOFF::getDepLibFromLinkerOpt was case sensitive)
and would have exposed "/defaultlib:foo /defaultlib:bar" as a single flag via
lto_module_get_*linkeropts. This may have been a bug in the implementation,
but it does give us a chance to fix the interface.
Differential Revision: http://reviews.llvm.org/D10548
llvm-svn: 241010
When the store sequence being combined actually stores the base register, we
should not mark it as killed until the end.
rdar://21504262
llvm-svn: 241003
This is a new version of http://reviews.llvm.org/D10260.
It turned out that when you specify an integer register in inline asm on
x86 you get the register of the required type size back. That means that
X86TargetLowering::getRegForInlineAsmConstraint() has to accept any of
the integer registers and adapt its size to the given target size which
may be any 8/16/32/64 bit sized type. Surprisingly that means given a
constraint of "{ax}" and a type of MVT::F32 we need to return X86::EAX.
This change makes this face explicit, the previous code seemed like
working by accident because there it never returned an error once a
register was found. On the other hand this rewrite allows to actually
return errors for invalid situations like requesting an integer register
for an i128 type.
Related to rdar://21042280
Differential Revision: http://reviews.llvm.org/D10813
llvm-svn: 241002
Some of the the permissible ARM -mfpu options, which are supported in GCC,
are currently not present in llvm/clang.This patch adds the options:
'neon-fp16', 'vfpv3-fp16', 'vfpv3-d16-fp16', 'vfpv3xd' and 'vfpv3xd-fp16.
These are related to half-precision floating-point and single precision.
Reviewers: rengolin, ranjeet.singh
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10645
llvm-svn: 240930
Summary:
Previously it (incorrectly) used GPR's.
Patch by Simon Dardis. A couple small corrections by myself.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10567
llvm-svn: 240883
Summary:
Some front ends make kernel pointers global already. In that case,
handlePointerParams does nothing.
Test Plan: more tests in lower-kernel-ptr-arg.ll
Reviewers: grosser
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10779
llvm-svn: 240849
Summary: We need to set MTYPE = 2 for VI shaders when targeting the HSA runtime.
Reviewers: arsenm
Differential Revision: http://reviews.llvm.org/D10777
llvm-svn: 240841
Summary:
This way the function symbol points to the start of amd_kernel_code_t
rather than the start of the function.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10705
llvm-svn: 240829
If pseudoToMCOpcode failed, we would return the original opcode, so operands
would be swapped, but the instruction would remain the same.
It resulted in LSHLREV a, b ---> LSHLREV b, a.
This fixes Glamor text rendering and
piglit/arb_sample_shading-builtin-gl-sample-mask on VI.
This is a candidate for stable branches.
v2: the test was simplified by Tom Stellard
llvm-svn: 240824
This patch corresponds to review:
http://reviews.llvm.org/D10638
This is the back end portion of patch
http://reviews.llvm.org/D10637
It just adds the code gen and intrinsic functions necessary to support that patch to the back end.
llvm-svn: 240820
SDNode already had ops() which would iterate over the operands and return
SDUse*. This version instead gets the SDValue's out of the SDUse's so that
we can use foreach in more places.
Reviewed by David Blaikie.
llvm-svn: 240805
This patch fixes the error in ARM.td which stated that Cortex-R5
floating point unit can do only single precision, when it can do double as well.
Reviewers: rengolin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10769
llvm-svn: 240799
Summary:
This only adds support for ULW of an immediate address with/without a source register.
It does not include support for ULW of the address of a symbol.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9663
llvm-svn: 240782
Cortex-R4F TRM states that fpu supports both single and double precision.
This patch corrects the information in ARM.td file and corresponding test.
Reviewers: rengolin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10763
llvm-svn: 240776
This patch adds support for the vector merge even word and vector merge odd word
instructions introduced in POWER8.
Phabricator review: http://reviews.llvm.org/D10704
llvm-svn: 240650
Summary:
Simplify emitDirectiveModuleFP() by having it just print the current information
from MipsABIFlagsSection and doing an updateABIInfo() before such calls.
This prevents us from forgetting to update the STI.FeatureBits,
because updateABIInfo() uses those to update the MipsABIFlagsSection object,
and also makes sure we use the update mechanism from MipsABIFlagsSection.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, mpf
Differential Revision: http://reviews.llvm.org/D10642
llvm-svn: 240637
As pointed out by Justin Bogner (see r240520), SystemZDAGToDAGISel::Select
currently attempts to convert boolean operations into RxSBG even on some
non-integer types (in particular, vector types). This would not work in
any case, and it happened to trigger undefined behaviour in allOnes.
This patch verifies that we have a (<= 64-bit) integer type before
attempting to perform this optimization.
llvm-svn: 240634
Summary:
We can simplify emitDirectiveModuleOddSPReg() by having it print the current OddSPReg information
from MipsABIFlagsSection and doing an updateABIInfo() before such calls.
This prevents us from forgetting to update the STI.FeatureBits, because updateABIInfo() uses those to update the MipsABIFlagsSection object,
and also makes sure we use the update mechanism from MipsABIFlagsSection.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, mpf
Differential Revision: http://reviews.llvm.org/D10641
llvm-svn: 240630
Summary:
In an expression such as "(((a+b)+c)+d)", parseParenExpression() would only parse the "a+b)+c", which would result in an error later on in the parser.
This means that we can only parse one level of inner parentheses.
In order to fix this, I added a new function called parseParenExprOfDepth(), which parses a specified number of trailing parenthesis expressions
(except for the outermost parenthesis), and changed MipsAsmParser to use it in parseMemOffset instead of parseParenExpression().
Reviewers: dsanders, rafael
Reviewed By: dsanders, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9742
llvm-svn: 240625
We don't always have FMA, for example when using 'clang -mavx512f'
without an explicit CPU.
Also check for an explicit +avx512f instead of CPUs in a couple
related tests.
llvm-svn: 240616
Summary
This change turns on the emission of
__LLVM_Stackmaps section when generating COFF binaries.
Test Plan
Added a scenario to the test case:
test\CodeGen\X86\statepoint-stackmap-format.ll.
Code Review:
http://reviews.llvm.org/D10680
llvm-svn: 240613
- Deciding that insn->sibIndex is SIB_INDEX_NONE does not require another
check beyond the fully decoded bits being equal to 0x4.
The expression insn->sibIndex == SIB_INDEX_sib could not have been true unless
index were 0x4, because SIB_INDEX_sib is merely the range base (SIB_INDEX_EAX)
plus 4. Respectively SIB_INDEX_sib64.
- Don't use a switch statement to perform left-shift.
Differential Revision: http://reviews.llvm.org/D9762
llvm-svn: 240598
Summary:
This patch first change the register that holds local address for stack
frame to %SPL. Then the new NVPTXPeephole pass will try to scan the
following pattern
%vreg0<def> = LEA_ADDRi64 <fi#0>, 4
%vreg1<def> = cvta_to_local %vreg0
and transform it into
%vreg1<def> = LEA_ADDRi64 %VRFrameLocal, 4
Patched by Xuetian Weng
Test Plan: test/CodeGen/NVPTX/local-stack-frame.ll
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: eliben, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10549
llvm-svn: 240587
COFF and MachO only define symbol sizes for common symbols. Reflect that
in the class hierarchy by having a method for common symbols only in the base
and a general one in ELF.
This avoids the need of using a magic value for the size, which had a few
problems
* Most callers didn't check for it.
* The ones that did could not tell the magic value from a file actually having
that value.
llvm-svn: 240529
This stops shifting a 32-bit value by such absurd amounts as 96 and
120. We do this by dropping a call to the function that was doing this
entirely, which rather surprisingly doesn't break *any* tests.
I've also added an assert in the misbehaving function to prove that
it's no longer being called with completely invalid arguments.
This change looks pretty bogus and we should probably be reverting
r238692 instead, but this is hard to do with the number of follow ups
that have happened since. It can't be any worse than the undefined
behaviour that was happening before though.
llvm-svn: 240526
This allOnes function hits undefined behaviour if Count is greater
than 64, but we can avoid that and simplify the calculation by just
saturating if such a value is passed in.
This comes up under ubsan becauseRxSBGOperands is sometimes created
with values that are 128 bits wide. Somebody more familiar with this
code should probably look into whether that's expected, as a 64 bit
mask may or may not be appropriate for such types.
llvm-svn: 240520
We used to erroneously match:
(v4i64 shuffle (v2i64 load), <0,0,0,0>)
Whereas vbroadcasti128 is more like:
(v4i64 shuffle (v2i64 load), <0,1,0,1>)
This problem doesn't exist for vbroadcastf128, which kept matching
the intrinsic after r231182. We should perhaps re-introduce the
intrinsic here as well, but that's a separate issue still being
discussed.
While there, add some proper vbroadcastf128 tests. We don't currently
match those, like for loading vbroadcastsd/ss on AVX (the reg-reg
broadcasts where added in AVX2).
Fixes PR23886.
llvm-svn: 240488
When UpdateBaseRegUses sees an instruction that defines the base
register it must stop, as the base register value it is updating is no
longer live. Ideally we would already have seen the register be killed
(which is already checked for), but the kill flags may be inaccurate
and we have to account for this.
Differential Revision: http://reviews.llvm.org/D10566
llvm-svn: 240424
Summary:
This only adds support for ULHU of an immediate address with/without a source register.
It does not include support for ULHU of the address of a symbol.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9671
llvm-svn: 240410
Summary: This isn't used right now, but it will be in some upcoming changes.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10568
llvm-svn: 240407
So far, LLVM has not emitted correct addend for N64 and N32 ABI. This patch
fixes that. It also removes fixup from MCJIT for R_MIPS_PC16 relocation.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D10565
llvm-svn: 240404
Summary: For the sake of consistency and to make some upcoming changes a little less noisy.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10639
llvm-svn: 240398
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
llvm-svn: 240395
Currently ( D10321, http://reviews.llvm.org/rL239486 ), we can use the machine combiner pass
to reassociate the following sequence to reduce the critical path:
A = ? op ?
B = A op X
C = B op Y
-->
A = ? op ?
B = X op Y
C = A op B
'op' is currently limited to x86 AVX scalar FP adds (with fast-math on), but in theory, it could
be any associative math/logic op (see TODO in code comment).
This patch generalizes the pattern match to ignore the instruction that defines 'A'. So instead of
a sequence of 3 adds, we now only need to find 2 dependent adds and decide if it's worth
reassociating them.
This generalization has a compile-time cost because we can now match more instruction sequences
and we rely more heavily on the machine combiner to discard sequences where reassociation doesn't
improve the critical path.
For example, in the new test case:
A = M div N
B = A add X
C = B add Y
We'll match 2 reassociation patterns, but this transform doesn't reduce the critical path:
A = M div N
B = A add Y
C = B add X
We need the combiner to reject that pattern but select this:
A = M div N
B = X add Y
C = B add A
Differential Revision: http://reviews.llvm.org/D10460
llvm-svn: 240361
The _Int instructions are special, in that they operate on the full
VR128 instead of FR32. The load folding then looks at MOVSS, at the
user, and bails out when it sees a size mismatch.
What we really know is that the rm_Int instructions don't load the
higher lanes, so folding is fine.
This happens for the straightforward intrinsic code, e.g.:
_mm_add_ss(a, _mm_load_ss(p));
Fixes PR23349.
Differential Revision: http://reviews.llvm.org/D10554
llvm-svn: 240326
According to the documentation, .thumb_set is 'the equivalent of a .set directive'.
We didn't have equivalent behaviour in terms of all the errors we could throw, for
example, when a symbol is redefined.
This change refactors parseAssignment so that it can be used by .set and .thumb_set
and implements tests for .thumb_set for all the errors thrown by that method.
Reviewed by Rafael Espíndola.
llvm-svn: 240318
D8982 ( checked in at http://reviews.llvm.org/rL239001 ) added command-line
options to allow reciprocal estimate instructions to be used in place of
divisions and square roots.
This patch changes the default settings for x86 targets to allow that recip
codegen (except for scalar division because that breaks too much code) when
using -ffast-math or its equivalent.
This matches GCC behavior for this kind of codegen.
Differential Revision: http://reviews.llvm.org/D10396
llvm-svn: 240310
Before this we were producing a TargetExternalSymbol from a MCSymbol.
That meant extracting the symbol name and fetching the symbol again
down the pipeline.
This patch adds a DAG.getMCSymbol that lets the MCSymbol pass unchanged on the
DAG.
Doing so removes the need for MO_NOPREFIX and fixes the root cause of pr23900,
allowing r240130 to be committed again.
llvm-svn: 240300
Summary: In this case, we're supposed to load the immediate in AT and then ADDu it with the source register and put it in the destination register.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9367
llvm-svn: 240278
Summary:
In this case, we're supposed to load the address of the symbol in AT and then ADDu it with the source register and
put it in the destination register.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9366
llvm-svn: 240273
This allows more call sequences to use pushes instead of movs when optimizing for size.
In particular, calling conventions that pass some parameters in registers (e.g. thiscall) are now supported.
Differential Revision: http://reviews.llvm.org/D10500
llvm-svn: 240257
This patch changes getRelocationAddend to use ErrorOr and considers it an error
to try to get the addend of a REL section.
If, for example, a x86_64 file has a REL section, that file is corrupted and
we should reject it.
Using ErrorOr is not ideal since we check the section type once per relocation
instead of once per section.
Checking once per section would involve getRelocationAddend just asserting and
callers checking the section before iterating over the relocations.
In any case, this is an improvement and includes a test.
llvm-svn: 240176
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Currently, we canonicalize shuffles that produce a result larger than
their operands with:
shuffle(concat(v1, undef), concat(v2, undef))
->
shuffle(concat(v1, v2), undef)
because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
This is useful in the general case, but there are special cases where
native shuffles produce larger results: the two-result ops.
We can look through the concat when lowering them:
shuffle(concat(v1, v2), undef)
->
concat(VZIP(v1, v2):0, :1)
This lets us generate the native shuffles instead of scalarizing to
dozens of VMOVs.
Differential Revision: http://reviews.llvm.org/D10424
llvm-svn: 240118
Deduplicates some code and lets us use LEA on atom when adjusting the
stack around callee-cleanup calls. This is the only intended
functionality change.
llvm-svn: 240044