The G_ZEXT in these cases seems to actually come from a combine that we do but
SelectionDAG doesn't. Looking through it allows us to match "uxtw #2" addressing
modes.
Differential Revision: https://reviews.llvm.org/D91475
The `Range` of an alias/anchor token includes the leading `&` or `*`,
but it is skipped while parsing the name. The check for an empty name
fails to account for the skipped leading character and so the error is
never hit.
Fix the off-by-one and add a couple regression tests.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D91462
We need to make sure the upper 32 bits are all ones to ensure the result is properly sign extended. Previously we only checked the lower 32 bits of the mask. I've also added a check that the shift amount is less than 32. Without that the original code asserts inside maskLeadingOnes if the SROI check is removed or the SROIW pattern is checked first. I've refactored the code to use early outs to reduce nesting.
I've also updated SLOIW matching with the same changes, but I couldn't find a broken test case with the existing code.
Differential Revision: https://reviews.llvm.org/D90961
In the existing logic, for a given alloca, as long as its pointer value is stored into another location, it's considered as escaped.
This is a bit too conservative. Specifically, in non-optimized build mode, it's often to have patterns of code that first store an alloca somewhere and then load it right away.
These used should be handled without conservatively marking them escaped.
This patch tracks how the memory location where an alloca pointer is stored into is being used. As long as we only try to load from that location and nothing else, we can still
consider the original alloca not escaping and keep it on the stack instead of putting it on the frame.
Differential Revision: https://reviews.llvm.org/D91305
This patch is added to remove the unreachable MBBs reference in the jump table.
Differential Revisien: https://reviews.llvm.org/D90498
Reviewed by: amyk, bsaleil
This defines a 'fastcc' for the VE target and implements vreg-to-vreg
copy for parameter passing. The 'fastcc' extends the standard CC for
SX-Aurora with register passing of vector-typed parameters and return
values.
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D90842
This patch adds a new pass to add !annotation metadata for entries in
@llvm.global.anotations, which is generated using
__attribute__((annotate("_name"))) on functions in Clang.
This has been discussed on llvm-dev as part of
RFC: Combining Annotation Metadata and Remarks
http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D91195
This patch fixes the function isWideningInstruction for scalable vectors.
Now the cost model can check the widening pattern for SVE.
Differential Revision: https://reviews.llvm.org/D91260
This patch updates Clang's IRGen to add !annotation nodes with an
"auto-init" annotation to all stores for auto-initialization.
As discussed in 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
this allows using optimization remarks to track down where auto-init
code was inserted (and not removed by optimizations).
There are a few cases in the tests where !annotation gets dropped by
optimizations. Those optimizations will be updated in subsequent
patches.
This patch is based on a patch by Francis Visoiu Mistrih.
Reviewed By: thegameg, paquette
Differential Revision: https://reviews.llvm.org/D91417
Widen the IV to the widest available and legal integer type, which makes this
transformations always safe so that we can skip overflow checks.
Motivation is to let this pass trigger on 64-bit targets too, and this is the
last patch in a serie to achieve this: D90402 moves pass LoopFlatten to just
before IndVarSimplify so that IVs are not already widened, D90421 factors out
widening from IndVarSimplify into Utils/SimplifyIndVar so that we can also use
it in LoopFlatten.
Differential Revision: https://reviews.llvm.org/D90640
This patch adds the SchedMachineModel for Cortex-M7. It
also adds test cases for the scheduling information.
Details of the pipeline and descriptions are in comments
in file ARMScheduleM7.td included in this patch.
Differential Revision: https://reviews.llvm.org/D91355
Similar to the X86 and AMDGPU targets, this uses a macro to cut down on
repetitive and error-prone code when converting RISCVISD node names to
strings in getTargetNodeName.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D91414
Patch by Elena Kovanova. Thanks Elena!
Problem:
LLVM already has a feature to profile the JIT-compiled code with VTune. This is
done using Intel JIT Profiling API (https://github.com/intel/ittapi). Function
information is captured by VTune as soon as the function is JIT-compiled. We
tried to use the same approach to report the function information generated by
the MCJIT engine – read parsing the debug information for in-memory ELF module
and report it using JIT API. As the results, we figured out that it did not work
properly for the following cases: inline functions, the functions located in
multiple source files, the functions having several bodies (address ranges).
Solution:
To overcome limitations described above, we have introduced new APIs as a part
of Intel ITT APIs to report the entire in-memory ELF module to be further
processed as regular ELF binaries with debug information.
This patch
1. Switches LLVM to open source version of Intel ITT/JIT APIs
(https://github.com/intel/ittapi) to keep it always up to date.
2. Adds support of profiling the code generated by MCJIT engine using Intel
VTune profiler
Another separate patch will get rid of obsolete Intel ITT APIs stuff, having
LLVM already switched to https://github.com/intel/ittapi.
Differential Revision: https://reviews.llvm.org/D86435
The VE backend represents vector instructions with an explicit 'i32'
vector length operand. In the VE ISA, the vector length is always read
from the VL hardware register. The LVLGen pass inserts 'lvl'
instructions as necessary to set VL to the right value before each
vector instruction.
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D91416
This patch teaches the jump threading pass to call BPI->eraseBlock
when it folds a conditional branch.
Without this patch, BranchProbabilityInfo could end up with stale edge
probabilities for the basic block containing the conditional branch --
one edge probability with less than 1.0 and the other for a removed
edge.
This patch is one of the steps before we can safely re-apply D91017.
Differential Revision: https://reviews.llvm.org/D91511
We unconditionally marked i64 as Custom, but did not install a
handler in ReplaceNodeResults when i64 isn't legal type. This
leads to ReplaceNodeResults asserting.
We have two options to fix this. Only mark i64 as Custom on
64-bit targets and let it expand to two i32 bitreverses which
each need a VPPERM. Or the other option is to add the Custom
handling to ReplaceNodeResults. This is what I went with.
In the last change to IRCE the BPI is ignored if BFI is present, however
BFI and BPI have a different thresholds. Specifically BPI approach checks only
latch exit probability so it is expected if the loop has only one exit block (latch)
the behavior with BFI and BPI should be the same,
BPI approach by default uses threshold 10, so it considers the loop with estimated
number of iterations less then 10 should not be considered for IRCE optimization.
BFI approach uses the default value 3 and this is inconsistent.
The CL modifies the code to use the same threshold for both approaches..
The test is updated due to it has two side-exits (except latch) and each of them has a
probability 1/16, so BFI estimates the number of runtime iteration is about to 7
(1/16 + 1/16 + some for latch) and test fails.
Reviewers: mkazantsev, ebrevnov
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D91230
There are 1-2 potential follow-up NFC commits to reduce
this further on the way to generalizing this for vectors.
The operand replacing path should be dead code because demanded
bits handles that more generally (D91415).
I noticed an add example like the one from D91343, so here's a similar patch.
The logic is based on existing code for the single-use demanded bits fold.
But I only matched a constant instead of using compute known bits on the
operands because that was the motivating patterni that I noticed.
I think this will allow removing a special-case (but incomplete) dedicated
fold within visitAnd(), but I need to untangle the existing code to be sure.
https://rise4fun.com/Alive/V6fP
Name: add with low mask
Pre: (C1 & (-1 u>> countLeadingZeros(C2))) == 0
%a = add i8 %x, C1
%r = and i8 %a, C2
=>
%r = and i8 %x, C2
Differential Revision: https://reviews.llvm.org/D91415
This patch turns VPWidenGEPRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D84683
In an effort to make code around flag determination more readable, and (possibly) prepare for a follow up change, factor out some of the flag detection logic. In the process, reduce the number of locations we mutate wrap flags by a couple.
Note that this isn't NFC. The old code tried for NSW xor (NUW || NW). This is, two different paths computed different sets of wrap flags. The new code will try for all three. The result is that some expressions end up with a few extra flags set.
This is used to test RemoveRedundantDbgInstrs(), which is used by other
passes.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D91477
Describe in the BackEnd Developer's Guide. Instrument a few backends.
Remove an old unused timing facility. Add a null backend for timing
the parser.
Differential Revision: https://reviews.llvm.org/D91388
See discussion in https://bugs.llvm.org/show_bug.cgi?id=45073 / https://reviews.llvm.org/D66324#2334485
the implementation is known-broken for certain inputs,
the bugreport was up for a significant amount of timer,
and there has been no activity to address it.
Therefore, just completely rip out all of misexpect handling.
I suspect, fixing it requires redesigning the internals of MD_misexpect.
Should anyone commit to fixing the implementation problem,
starting from clean slate may be better anyways.
This reverts commit 7bdad08429,
and some of it's follow-ups, that don't stand on their own.
This library is only used in Flang at the moment and not tested withing LLVM.
Having it as a component is breaking llvm-config:
$ bin/llvm-config --shared-mode
llvm-config: error: component libraries and shared library
llvm-config: error: missing: [...]/lib/libLLVMFrontendOpenACC.a
This will reverted when unit-tests are provided for it.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D91470
When the load value is folded into the sin/cos operation, the
AMDGPU library calls simplifier could still mark the function
as unmodified. Instead ensure if there is an early return,
return whether the load was folded into the sin/cos call.
Authored by MJDSys
Differential Revision: https://reviews.llvm.org/D91401
I'm not why it was added to DAGToDAG oringally but it seems
to make sense alongside the non-TLS version: LowerGlobalAddress
Differential Revision: https://reviews.llvm.org/D91432
dependency. NFC
Use findSingleDependency in place of FindDependencies and stop passing a
set of Instructions around. Modify FindDependencies to return a boolean
flag which indicates whether the dependencies it has found are all
valid.
ValueTracking was using a more powerful abs() implementation. Roll
it into KnownBits::abs(). Also add an exhaustive test for abs(),
in both the poisoning and non-poisoning variants.
Like inlineCallIfPossible and InlinerPass, after inlining mergeAttributesForInlining
should be called to merge callee's attributes to caller. But it is not called in
AlwaysInliner, causes caller's attributes inconsistent with inlined code.
Attached test case demonstrates that attribute "min-legal-vector-width"="512" is
not merged into caller without this patch, and it causes failure in SelectionDAG
when lowering the inlined AVX512 intrinsic.
Differential Revision: https://reviews.llvm.org/D91446
When we see
```
%sub = G_SUB 0, %x
%select = G_SELECT %cc, %t, %sub
```
Fold away the G_SUB by producing
```
%select = CSNEG %t, %x, cc
```
Simple IR example: https://godbolt.org/z/K8TEnh
This is valid on both sides of the select, but for now, just handle one side.
It may make more sense to handle swapping sides during post-legalizer lowering.
Differential Revision: https://reviews.llvm.org/D90723
Reducing some code duplication.
We had a helper for checking if a predicate is unsigned. Remove that and use
the existing function in Instructions.cpp.
Differential Revision: https://reviews.llvm.org/D91288
Handle the emission of the add in a single place, instead of three
different ones.
Don't emit an unnecessary add with zero to start with. It will get
dropped by InstCombine, but we may as well not create it in the
first place. This also means that InstCombine does not need to
specially handle this extra add.
This is conceptually NFC, but can affect worklist order etc.
For example, during RAUW in IRMover, the `Function` ValueAsMetadata in "CG Profile" could become bitcast.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D88433
It's fairly common to need matchers for a specific constant value, or for
common idioms like finding a negated register.
Add
- `m_SpecificICst`, which returns true when matching a specific value..
- `m_ZeroInt`, which returns true when an integer 0 is matched.
- `m_Neg`, which returns when a register is negated.
Also update a few places which use idioms related to the new matchers.
Differential Revision: https://reviews.llvm.org/D91397
The SCEV code for constructing GEP expressions currently assumes
that the addition of the base and all the offsets is nsw if the GEP
is inbounds. While the addition of the offsets is indeed nsw, the
addition to the base address is not, as the base address is
interpreted as an unsigned value.
Fix the GEP expression code to not assume nsw for the base+offset
calculation. However, do assume nuw if we know that the offset is
non-negative. With this, we use the same behavior as the
construction of GEP addrecs does. (Modulo the fact that we
disregard SCEV unification, as the pre-existing FIXME points out).
Differential Revision: https://reviews.llvm.org/D90648
When computing the known bits for a GEP, don't set the nsw flag
when adding an offset to an address. The nsw flag only applies to
pure offset additions (see also D90708).
The nsw flag is only used in a very minor way by the code, to the
point that I was not able to come up with a test case where it
makes a difference.
Differential Revision: https://reviews.llvm.org/D90637
By starting with the source shift value minimum leading/trailing bits, we can then add the minimum known shift amount to more accurately predict the minimum leading/trailing bits of the result.
This is currently only covered by the exhaustive unit tests in KnownBitsTests.cpp, but will help with some of the regressions encountered in D90479 (PR44526).
These relocations represent offsets from the __tls_base symbol.
Previously we were just using normal MEMORY_ADDR relocations and relying
on the linker to select a segment-offset rather and absolute value in
Symbol::getVirtualAddress(). Using an explicit relocation type allows
allow us to clearly distinguish absolute from relative relocations based
on the relocation information alone.
One place this is useful is being able to reject absolute relocation in
the PIC case, but still accept TLS relocations.
Differential Revision: https://reviews.llvm.org/D91276
For querying divergence the chained analysis passes are required
to be alive, for instance LoopInfoWrapperPass.
Ensure that by using addRequiredTransitive.
Differential Revision: https://reviews.llvm.org/D91335
Use exact component name in add_ocaml_library.
Make expand_topologically compatible with new architecture.
Fix quoting in is_llvm_target_library.
Fix LLVMipo component name.
Write release note.
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.
It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.
The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.
To motivate this, consider these specific questions we would like to get answered:
* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?
Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
Reviewed By: thegameg, jdoerfert
Differential Revision: https://reviews.llvm.org/D91188
The test fails on Mac, see comment on the code review.
> This option was in a rather convoluted place, causing global parameters
> to be set in awkward and undesirable ways to try to account for it
> indirectly. Add tests for the -disable-debug-info option and ensure we
> don't print unintended markers from unintended places.
>
> Reviewed By: dstenb
>
> Differential Revision: https://reviews.llvm.org/D91083
This reverts commit 9606ef03f0.
If the scatter store is able to perform the sign/zero extend of
its index, this is folded into the instruction with refineIndexType().
Additionally, refineUniformBase() will return the base pointer and index
from an add + splat_vector.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90942
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848