into CRTP base classes.
This can sometimes happen and not cause an immediate failure when the
derived class is, itself, a template. You can end up essentially calling
methods on the wrong derived type but a type where many things will
appear to "work".
To fail fast and with a clear error message we can use a static_assert,
but we have to stash that static_assert inside a method body or nested
type that won't need to be completed while building the base class. I've
tried to pick a reasonably small number of places that seemed like they
would definitely get triggered on use.
This is the last of the patch series defending against this that I have
planned, so far no bugs other than the original were found.
llvm-svn: 294275
SCEV.
This test was immediately the slowest test in 'check-llvm' even in an
optimized build and was driving up the total test time by 50% for me.
Sanjoy has filed a PR about the quadratic behavior in SCEV but it is
also concerning that the test still passes given that r294181 added
a threshold at 32 to SCEV. I've followed up on the original patch to
figure out how this test should work long-term, but for now I want to
get check-llvm to be fast again.
llvm-svn: 294241
iteration.
The lazy formation of RefSCCs isn't really the most important part of
the laziness here -- that has to do with walking the functions
themselves -- and isn't essential to maintain. Originally, there were
incremental update algorithms that relied on updates happening
predominantly near the most recent RefSCC formed, but those have been
replaced with ones that have much tighter general case bounds at this
point. We do still perform asserts that only scale well due to this
incrementality, but those are easy to place behind EXPENSIVE_CHECKS.
Removing this simplifies the entire analysis by having a single up-front
step that builds all of the RefSCCs in a direct Tarjan walk. We can even
easily replace this with other or better algorithms at will and with
much less confusion now that there is no iterator-based incremental
logic involved. This removes a lot of complexity from LCG.
Another advantage of moving in this direction is that it simplifies
testing the system substantially as we no longer have to worry about
observing and mutating the graph half-way through the RefSCC formation.
We still need a somewhat special iterator for RefSCCs because we want
the iterator to remain stable in the face of graph updates. However,
this now merely involves relative indexing to the current RefSCC's
position in the sequence which isn't too hard.
Differential Revision: https://reviews.llvm.org/D29381
llvm-svn: 294227
for a quite big function with source like
%add = add nsw i32 %mul, %conv
%mul1 = mul nsw i32 %add, %conv
%add2 = add nsw i32 %mul1, %add
%mul3 = mul nsw i32 %add2, %add
; repeat couple of thousands times
that can be produced by loop unroll, getAddExpr() tries to recursively construct SCEV and runs almost infinite time.
Added recursion depth restriction (with new parameter to set it)
Reviewers: sanjoy
Subscribers: hfinkel, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28158
llvm-svn: 294181
Summary: As per title. I ran into that limitation of the API doing some other work, so I though that'd be a nice addition.
Reviewers: jroelofs, compnerd, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29503
llvm-svn: 294063
If LLVM was configured with an x86_64-apple-macosx host triple, this
test would fail, as the API works but the triple isn't in the whitelist.
llvm-svn: 293990
Add both cores to the target parser and TableGen. Test that eabi
attributes are set correctly for both cores. Additionally, test the
absence and presence of MOVT in Cortex-M23 and Cortex-M33, respectively.
Committed on behalf of Sanne Wouda.
Reviewers : rengolin, olista01.
Differential Revision: https://reviews.llvm.org/D29073
llvm-svn: 293761
Summary: Extend the MemorySSAUpdater API to allow movement to arbitrary places
Reviewers: davide, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29239
llvm-svn: 293363
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
llvm-svn: 293356
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
llvm-svn: 293085
AssertingVH that delays any reported error until the handle is *used*.
This allows data structures to contain handles which become dangling
provided the data structure is cleaned up afterward rather than used for
anything interesting.
The implementation is moderately horrible in part because it works to
leave AssertingVH in place, undisturbed. If at some point there is
consensus that this is simply how AssertingVH should be used, it can be
substantially simplified.
This remains a boring pointer in a non-asserts build as you would
expect. The only place we pay cost is in asserts builds.
I plan to use this as a basis for replacing the asserting VHs that
currently dangle in the new PM until invalidation occurs in both LVI and
SCEV.
Differential Revision: https://reviews.llvm.org/D29061
llvm-svn: 292925
The test fails when there is a symlink on the path because then the path
returned by current_path will not match the one we have set. Instead of
doing a string match check the unique id of the two files.
llvm-svn: 292916
Summary:
This adds a cross-platform way of setting the current working directory
analogous to the existing current_path() function used for retrieving
it. The function will be used in lldb.
Reviewers: rafael, silvas, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29035
llvm-svn: 292907
This refactor allows parallel calls to be made via an arbitrary async call
dispatcher. In particular, this allows ParallelCallGroup to be used with
derived RPC classes that expose custom async RPC call operations.
llvm-svn: 292891
Summary:
This seemed to be an oversight seeing as DenseMap has these conversions.
This patch does the following:
- Adds a default constructor to the iterators.
- Allows DenseSet::ConstIterators to be copy constructed from DenseSet::Iterators
- Allows mutual comparison between Iterators and ConstIterators.
All of these are available in the DenseMap implementation, so the implementation here is trivial.
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28999
llvm-svn: 292879
Summary:
There's a comment in XorSlowCase that says "0^0==1" which isn't true. 0 xored with 0 is still 0. So I don't think we need to clear any unused bits here.
Now there is no difference between XorSlowCase and AndSlowCase/OrSlowCase other than the operation being performed
Reviewers: majnemer, MatzeB, chandlerc, bkramer
Reviewed By: MatzeB
Subscribers: chfast, llvm-commits
Differential Revision: https://reviews.llvm.org/D28986
llvm-svn: 292873
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
llvm-svn: 292709
Summary: This patch adds some new APIs to enable using the YAML DWARF representation in unit tests. The most basic new API is DWARFYAML::EmitDebugSections which converts a YAML string into a series of owned MemoryBuffer objects stored in a StringMap. The string map can then be used to construct a DWARFContext for parsing in place of an ObjectFile.
Reviewers: dblaikie, clayborg
Subscribers: mgorny, fhahn, jgosnell, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D28828
llvm-svn: 292634
loops in a function.
These are relatively confusing to talk about and compute correctly so it
seems really good to write down their implementation in one place. I've
replaced one place we needed this in the loop PM infrastructure and
I have another place in a pending patch that wants it.
We can't quite use this for the core loop PM walk because there we're
sometimes working on a sub-forest.
I'll add the expected unittests before committing this but wanted to
make sure folks were happy with these names / comments.
Credit goes to Richard Smith for the idea for naming the order where siblings
are in reverse program order but the tree traversal remains preorder.
Differential Revision: https://reviews.llvm.org/D28932
llvm-svn: 292569
This was being parsed / serialized ad-hoc inside the code
for a specific PDB stream. But this data structure is used
in multiple ways / places within the PDB format. To be able
to re-use it we need to raise this code out and make it more
generic. In doing so, a number of bugs are fixed in the
original implementation, and support is added for growing
the hash table and deleting items from the hash table,
which had either been omitted or incorrect implemented in
the initial version.
Differential Revision: https://reviews.llvm.org/D28715
llvm-svn: 292535
The scaling is done with reference to the the new frequency of a reference block.
Differential Revision: https://reviews.llvm.org/D28535
llvm-svn: 292507
Enable an ELFObjectFile to read the its arm build attributes to
produce a target triple with a specific ARM architecture.
llvm-objdump now uses this functionality to automatically produce
a more accurate target.
Differential Revision: https://reviews.llvm.org/D28769
llvm-svn: 292366
other test cases.
Summary: Refactor out LoopInfo computation so that it can be
used by other test cases.
So i am changing this test proactively for later commit, which will use
this function.
Reviewers: sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28778
llvm-svn: 292250
No any changes, will follow up with D28807 commit containing APLi change for clang
to fix build issues happened.
Original commit message:
[Support/Compression] - Change zlib API to return Error instead of custom status.
Previously API returned custom enum values.
Patch changes it to return Error with string description.
That should help users to report errors in universal way.
Differential revision: https://reviews.llvm.org/D28684
llvm-svn: 292226
Previously API returned custom enum values.
Patch changes it to return Error with string description.
That should help users to report errors in universal way.
Differential revision: https://reviews.llvm.org/D28684
llvm-svn: 292214