The warning warns on TypedefNameDecls -- typedefs and C++11 using aliases --
that are !isReferenced(). Since the isReferenced() bit on TypedefNameDecls
wasn't used for anything before this warning it wasn't always set correctly,
so this patch also adds a few missing MarkAnyDeclReferenced() calls in
various places for TypedefNameDecls.
This is made a bit complicated due to local typedefs possibly being used only
after their local scope has closed. Consider:
template <class T>
void template_fun(T t) {
typename T::Foo s3foo; // YYY
(void)s3foo;
}
void template_fun_user() {
struct Local {
typedef int Foo; // XXX
} p;
template_fun(p);
}
Here the typedef in XXX is only used at end-of-translation unit, when YYY in
template_fun() gets instantiated. To handle this, typedefs that are unused when
their scope exits are added to a set of potentially unused typedefs, and that
set gets checked at end-of-TU. Typedefs that are still unused at that point then
get warned on. There's also serialization code for this set, so that the
warning works with precompiled headers and modules. For modules, the warning
is emitted when the module is built, for precompiled headers each time the
header gets used.
Finally, consider a function using C++14 auto return types to return a local
type defined in a header:
auto f() {
struct S { typedef int a; };
return S();
}
Here, the typedef escapes its local scope and could be used by only some
translation units including the header. To not warn on this, add a
RecursiveASTVisitor that marks all delcs on local types returned from auto
functions as referenced. (Except if it's a function with internal linkage, or
the decls are private and the local type has no friends -- in these cases, it
_is_ safe to warn.)
Several of the included testcases (most of the interesting ones) were provided
by Richard Smith.
(gcc's spelling -Wunused-local-typedefs is supported as an alias for this
warning.)
llvm-svn: 217298
ensure that querying the first declaration for its most recent declaration
checks for redeclarations from the imported module.
This works as follows:
* The 'most recent' pointer on a canonical declaration grows a pointer to the
external AST source and a generation number (space- and time-optimized for
the case where there is no external source).
* Each time the 'most recent' pointer is queried, if it has an external source,
we check whether it's up to date, and update it if not.
* The ancillary data stored on the canonical declaration is allocated lazily
to avoid filling it in for declarations that end up being non-canonical.
We'll still perform a redundant (ASTContext) allocation if someone asks for
the most recent declaration from a decl before setPreviousDecl is called,
but such cases are probably all bugs, and are now easy to find.
Some finessing is still in order here -- in particular, we use a very general
mechanism for handling the DefinitionData pointer on CXXRecordData, and a more
targeted approach would be more compact.
Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was
addressing only a corner of the full problem space here. That's not covered
by this patch.
Early performance benchmarks show that this makes no measurable difference to
Clang performance without modules enabled (and fixes a major correctness issue
with modules enabled). I'll revert if a full performance comparison shows any
problems.
llvm-svn: 209046
if it found any decls, rather than returning a list of found decls. This
removes a returning-ArrayRef-to-deleted-storage bug from
MultiplexExternalSemaSource (in code not exercised by any of the clang
binaries), reduces the work required in the found-no-decls case with PCH, and
importantly removes the need for DeclContext::lookup to be reentrant.
No functionality change intended!
llvm-svn: 174576
This does limit these typedefs to being sequences, but no current usage
requires them to be contiguous (we could expand this to a more general
iterator pair range concept at some point).
Also, it'd be nice if SmallVector were constructible directly from an ArrayRef
but this is a bit tricky since ArrayRef depends on SmallVectorBaseImpl for the
inverse conversion. (& generalizing over all range-like things, while nice,
would require some nontrivial SFINAE I haven't thought about yet)
llvm-svn: 170482
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237