The first source has the same EEW as the destination, but we're
using earlyclobber which prevents them from ever being the same
register.
To workaround this, add a special TIED pseudo to use whenever the
first source and merge operand are the same value. This allows
us to use a single operand for the merge operand and first source
which we can then tie to the destination. A tied source disables
earlyclobber for that operand.
Reviewed By: arcbbb
Differential Revision: https://reviews.llvm.org/D103211
This patch uses the `getSymbolIndexForFunctionAddress` helper function to print function names for BB address map entries.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D102900
Support for tensor types in the unrolled version will follow in a separate commit.
Add a new pass option to activate lowering of transfer ops with tensor types (default: deactivated).
Differential Revision: https://reviews.llvm.org/D102666
Recently we added diagnosing ODR-use of host variables
in device functions, which includes ODR-use of const
host variables since they are not really emitted on
device side. This caused regressions since we used
to allow ODR-use of const host variables in device
functions.
This patch allows ODR-use of const variables in device
functions if the const variables can be statically initialized
and have an empty dtor. Such variables are marked with
implicit constant attrs and emitted on device side. This is
in line with what clang does for constexpr variables.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103108
Previously ignore counts were checked when we stopped to do the sync callback in Breakpoint::ShouldStop. That meant we would do all the ignore count work even when
there is also a condition says the breakpoint should not stop.
That's wrong, lldb treats breakpoint hits that fail the thread or condition checks as "not having hit the breakpoint". So the ignore count check should happen after
the condition and thread checks in StopInfoBreakpoint::PerformAction.
The one side-effect of doing this is that if you have a breakpoint with a synchronous callback, it will run the synchronous callback before checking the ignore count.
That is probably a good thing, since this was already true of the condition and thread checks, so this removes an odd asymmetry. And breakpoints with sync callbacks
are all internal lldb breakpoints and there's not a really good reason why you would want one of these to use an ignore count (but not a condition or thread check...)
Differential Revision https://reviews.llvm.org/D103217
These tests will show how (and r i) will be optimized to
(BCLRI (BCLRI r, i0), i1) or (BCLRI (ANDI r, i0), i1) by future
commits.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D103359
Currently clang and nvcc use c++14 as default std for C++.
gcc 11 even uses c++17 as default std for C++. However,
clang uses c++98 as default std for CUDA/HIP.
As c++14 has been well adopted and became default for
clang, it seems reasonable to use c++14 as default std
for CUDA/HIP.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103221
Clang writes object files by first writing to a .tmp file and then
renaming to the final .obj name. On Windows, if a compile is killed
partway through the .tmp files don't get deleted.
Currently it seems like RemoveFileOnSignal takes care of deleting the
tmp files on Linux, but on Windows we need to call
setDeleteDisposition on tmp files so that they are deleted when
closed.
This patch switches to using TempFile to create the .tmp files we write
when creating object files, since it uses setDeleteDisposition on Windows.
This change applies to both Linux and Windows for consistency.
Differential Revision: https://reviews.llvm.org/D102876
Some existing places use getPointerElementType() to create a copy of a
pointer type with some new address space.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D103429
* A Reducer is a kind of RewritePattern, so it's just the same as
writing graph rewrite.
* ReductionTreePass operates on Operation rather than ModuleOp, so that
* we are able to reduce a nested structure(e.g., module in module) by
* self-nesting.
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D101046
We can look through invariant group intrinsics for the purposes of
simplifying the result of a load.
Since intrinsics can't be constants, but we also don't want to
completely rewrite load constant folding, we convert the load operand to
a constant. For GEPs and bitcasts we just treat them as constants. For
invariant group intrinsics, we treat them as a bitcast.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D101103
We used to not print dylibs referenced by other dylibs in `-t` mode. This
affected reexports, and with `-flat_namespace` also just dylibs loaded by
dylibs. Now we print them.
Fixes PR49514.
Differential Revision: https://reviews.llvm.org/D103428
All fuchsia targets will now use the relative-vtables ABI by default.
Also remove -fexperimental-relative-c++-abi-vtables from test RUNs targeting fuchsia.
Differential Revision: https://reviews.llvm.org/D102374
In all of these cases, the functions could simply return a nullptr instead of {}.
There is no case where Optional<nullptr> has a special meaning.
Differential Revision: https://reviews.llvm.org/D103489
I backed this off to make the previous patch easier to wrangle, but now
this is an efficient query and it is better to not replace it in CSE.
Differential Revision: https://reviews.llvm.org/D103494
In some cases, we end up with several distinct DylibFiles that
have the same install name. Only emit a single LC_LOAD_DYLIB in
those cases.
This happens in 3 cases I know of:
1. Some tbd files are symlinks. libpthread.tbd is a symlink against
libSystem.tbd for example, so `-lSystem -lpthread` loads
libSystem.tbd twice. We could (and maybe should) cache loaded
dylibs by realpath() to catch this.
2. Some tbd files are copies of each other. For example,
CFNetwork.framework/CFNetwork.tbd and
CFNetwork.framework/Versions/A/CFNetwork.tbd are two distinct
copies of the same file. The former is found by
`-framework CFNetwork` and the latter by the reexport in
CoreServices.tbd. We could conceivably catch this by
making `-framework` search look in `Versions/Current` instead
of in the root, and/or by using a content hash to cache
tbd files, but that's starting to sound complicated.
3. Magic $ld$ symbol processing can change the install name of
a dylib based on the target platform_version. Here, two
truly distinct dylibs can have the same install name.
So we need this code to deal with (3) anyways. Might as well use
it for 1 and 2, at least for now :)
With this (and D103430), clang-format links in the same dylibs
when linked with lld and ld64.
Differential Revision: https://reviews.llvm.org/D103488
The previous impl densely scanned the entire region starting with an op
when dominators were created, creating a DominatorTree for every region.
This is extremely expensive up front -- particularly for clients like
Linalg/Transforms/Fusion.cpp that construct DominanceInfo for a single
query. It is also extremely memory wasteful for IRs that use single
block regions commonly (e.g. affine.for) because it's making a
dominator tree for a region that has trivial dominance. The
implementation also had numerous unnecessary minor efficiencies, e.g.
doing multiple walks of the region tree or tryGetBlocksInSameRegion
building a DenseMap that it didn't need.
This patch switches to an approach where [Post]DominanceInfo is free
to construct, and which lazily constructs DominatorTree's for any
multiblock regions that it needs. This avoids the up-front cost
entirely, making its runtime proportional to the complexity of the
region tree instead of # ops in a region. This also avoids the memory
and time cost of creating DominatorTree's for single block regions.
Finally this rewrites the implementation for simplicity and to avoids
the constant factor problems the old implementation had.
Differential Revision: https://reviews.llvm.org/D103384
The compiler used on Apple bots doesn't know about -std=c++20 yet, so
we can't use that just yet.
Differential Revision: https://reviews.llvm.org/D103475
Depthwise convolution should support kernel dilation and non-dilation should
not be a special case. Updated op definition to include a dilation attribute.
This also adds a tosa.depthwise_conv2d lowering to linalg to support the new
linalg behavior.
Differential Revision: https://reviews.llvm.org/D103219
It's still in use in a few places so we can't delete it yet but there's not
many at this point.
Differential Revision: https://reviews.llvm.org/D103352
This gives a nice message about the location of errors in a large
tablegen file, which is much more useful for users
Differential Revision: https://reviews.llvm.org/D102740
This omits load commands for unreferenced dylibs if:
- the dylib was loaded implicitly,
- it is marked MH_DEAD_STRIPPABLE_DYLIB
- or -dead_strip_dylibs is passed
This matches ld64.
Currently, the "is dylib referenced" state is computed before dead code
stripping and is not updated after dead code stripping. This too matches ld64.
We should do better here.
With this, clang-format linked with lld (like with ld64) no longer has
libobjc.A.dylib in `otool -L` output. (It was implicitly loaded as a reexport
of CoreFoundation.framework, but it's not needed.)
Differential Revision: https://reviews.llvm.org/D103430
WindowsSupport.h is a public header, however if it gets included, will cause a compile error indicating that llvm/Config/config.h cannot be found, because config.h is a private header. However there is no actual dependency on the private things in this header, so it can be changed to the public config header.
Reviewed By: amccarth
Differential Revision: https://reviews.llvm.org/D103370
- A lot of lit tests simply specify the arch minus the triple. On z/OS, this could result in a scenario of some-other-triple-unknown-ibm-zos. This points to an incorrect triple + arch combo.
- To prevent this, isOSzOS change is switched in favour of isOSBinFormatGOFF.
- This is because, the GOFF format is set only if the triple is systemz and if the operating system is GOFF. And currently, there are no other architectures/os's using the GOFF file format.
- An argument could be made that the problematic tests be fixed to explicitly specify the arch-vendor-triple string, but there's a large number of these tests, and adding this stricter scope ensures that we aren't instantiating the incorrect instance of the AsmParser for other platforms when run on z/OS.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D103343
This addresses pr50497. The argument of a typeid expression is
unevaluated, *except* when it's a polymorphic type. We handle this by
parsing as unevaluated and then transforming to evaluated if we
discover it should have been an evaluated context.
We do the same in TreeTransform<Derived>::TransformCXXTypeidExpr,
entering unevaluated context before transforming and rebuilding the
typeid. But that's incorrect and can lead us to converting to
evaluated context twice -- and hitting an assert.
During normal template instantiation we're always cloning the
expression, but during generic lambda processing we do not necessarily
AlwaysRebuild, and end up with TransformDeclRefExpr unconditionally
calling MarkDeclRefReferenced around line 10226. That triggers the
assert.
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkDeclRefReferenced(E);
This patch makes 2 changes.
a) TreeTransform<Derived>::TransformCXXTypeidExpr only enters
unevaluated context if the typeid's operand is not a polymorphic
glvalue. If it is, it keeps the same evaluation context.
b) Sema::BuildCXXTypeId is altered to only transform to evaluated, if
the current context is unevaluated.
Differential Revision: https://reviews.llvm.org/D103258
loadDylib() keeps a name->DylibFile cache, but it only writes
to the cache once the DylibFile constructor has completed.
So dylib loads done recursively from the DylibFile constructor
wouldn't use the cache.
Now, we load additional dylibs after writing to the cache,
which means the cache now gets used for dylibs loaded because
they're referenced from other dylibs.
Related to PR49514 and PR50101, but no dramatic behavior change in itself.
(Technically we no longer crash when a tbd file reexports itself,
but that doesn't happen in practice. We now accept it silently instead
of crashing; ld64 has a diag for the reexport cycle.)
Differential Revision: https://reviews.llvm.org/D103423