Follow up to D33147
NVPTXTargetLowering::LowerCall was trusting the default argument values.
Fixes another 17 of the NVPTX '-verify-machineinstrs with EXPENSIVE_CHECKS' errors in PR32146.
Differential Revision: https://reviews.llvm.org/D33189
llvm-svn: 303082
NFC followup to D33147, this explicitly sets all the arguments (instead of relying on the defaults) to SelectionDAG::getMemIntrinsicNode to help identify -verify-machineinstrs issues.
llvm-svn: 303047
This fixes 47 of the 75 NVPTX '-verify-machineinstrs with EXPENSIVE_CHECKS' errors in PR32146.
Differential Revision: https://reviews.llvm.org/D33147
llvm-svn: 302942
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
The method is called "get *Param* Alignment", and is only used for
return values exactly once, so it should take argument indices, not
attribute indices.
Avoids confusing code like:
IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
Alignment = CS->getParamAlignment(ArgIdx + 1);
Add getRetAlignment to handle the one case in Value.cpp that wants the
return value alignment.
This is a potentially breaking change for out-of-tree backends that do
their own call lowering.
llvm-svn: 301682
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
This patch uses lshrInPlace to replace code where the object that lshr is called on is being overwritten with the result.
This adds an lshrInPlace(const APInt &) version as well.
Differential Revision: https://reviews.llvm.org/D32155
llvm-svn: 300566
Add hasParamAttribute() and use it instead of hasAttribute(ArgNo+1,
Kind) everywhere.
The fact that the AttributeList index for an argument is ArgNo+1 should
be a hidden implementation detail.
NFC
llvm-svn: 300272
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
This is repetition of isImage() function in NVPTXUtilities.cpp.
Patch by Briana Grace!
Differential Revision: https://reviews.llvm.org/D30706
llvm-svn: 297252
Make opcode selection code for the load instruction a bit easier
to read and maintain.
This patch also catches number of f16 load/store variants that were
not handled before.
Differential Revision: https://reviews.llvm.org/D30513
llvm-svn: 296785
This patch enables support for .f16x2 operations.
Added new register type Float16x2.
Added support for .f16x2 instructions.
Added handling of vectorized loads/stores of v2f16 values.
Differential Revision: https://reviews.llvm.org/D30057
Differential Revision: https://reviews.llvm.org/D30310
llvm-svn: 296032
Original code only used vector loads/stores for explicit vector arguments.
It could also do more loads/stores than necessary (e.g v5f32 would
touch 8 f32 values). Aggregate types were loaded one element at a time,
even the vectors contained within.
This change attempts to generalize (and simplify) parameter space
loads/stores so that vector loads/stores can be used more broadly.
Functionality of the patch has been verified by compiling thrust
test suite and manually checking the differences between PTX
generated by llvm with and without the patch.
General algorithm:
* ComputePTXValueVTs() flattens input/output argument into a flat list
of scalars to load/store and returns their types and offsets.
* VectorizePTXValueVTs() uses that data to create vectorization plan
which returns an array of flags marking boundaries of vectorized
load/stores. Scalars are represented as 1-element vectors.
* Code that generates loads/stores implements a simple state machine
that constructs a vector according to the plan.
Differential Revision: https://reviews.llvm.org/D30011
llvm-svn: 295784
x*rsqrt(x) returns NaN for x == 0, whereas 1/rsqrt(x) returns 0, as
desired.
Verified that the particular nvptx approximate instructions here do in
fact return 0 for x = 0.
llvm-svn: 293713
Summary:
This lets us lower to sqrt.approx and rsqrt.approx under more
circumstances.
* Now we emit sqrt.approx and rsqrt.approx for calls to @llvm.sqrt.f32,
when fast-math is enabled. Previously, we only would emit it for
calls to @llvm.nvvm.sqrt.f. (With this patch we no longer emit
sqrt.approx for calls to @llvm.nvvm.sqrt.f; we rely on intcombine to
simplify llvm.nvvm.sqrt.f into llvm.sqrt.f32.)
* Now we emit the ftz version of rsqrt.approx when ftz is enabled.
Previously, we only emitted rsqrt.approx when ftz was disabled.
Reviewers: hfinkel
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: https://reviews.llvm.org/D28508
llvm-svn: 293605
- Move DEBUG_TYPE below includes
- Change unknown address space constant to be consistent with other
passes
- Grammar fixes in debug output
llvm-svn: 293567
Different architectures can have different meaning for flags in the
SHF_MASKPROC mask, so we should always check what the architecture use
before checking the flag.
NFC for now, but will allow fixing the value of an xmos flag.
llvm-svn: 293484
Support for barrier synchronization between a subset of threads
in a CTA through one of sixteen explicitly specified barriers.
These intrinsics are not directly exposed in CUDA but are
critical for forthcoming support of OpenMP on NVPTX GPUs.
The intrinsics allow the synchronization of an arbitrary
(multiple of 32) number of threads in a CTA at one of 16
distinct barriers. The two intrinsics added are as follows:
call void @llvm.nvvm.barrier.n(i32 10)
waits for all threads in a CTA to arrive at named barrier #10.
call void @llvm.nvvm.barrier(i32 15, i32 992)
waits for 992 threads in a CTA to arrive at barrier #15.
Detailed description of these intrinsics are available in the PTX manual.
http://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions
Reviewers: hfinkel, jlebar
Differential Revision: https://reviews.llvm.org/D17657
llvm-svn: 293384
This change introduces adjustPassManager target callback giving a
target an opportunity to tweak PassManagerBuilder before pass
managers are populated.
This generalizes and replaces addEarlyAsPossiblePasses target
callback. In particular that can be used to add custom passes to
extension points other than EP_EarlyAsPossible.
Differential Revision: https://reviews.llvm.org/D28336
llvm-svn: 293189
Summary:
Specifically, we upgrade llvm.nvvm.:
* brev{32,64}
* clz.{i,ll}
* popc.{i,ll}
* abs.{i,ll}
* {min,max}.{i,ll,u,ull}
* h2f
These either map directly to an existing LLVM target-generic
intrinsic or map to a simple LLVM target-generic idiom.
In all cases, we check that the code we generate is lowered to PTX as we
expect.
These builtins don't need to be backfilled in clang: They're not
accessible to user code from nvcc.
Reviewers: tra
Subscribers: majnemer, cfe-commits, llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D28793
llvm-svn: 292694
Summary:
DADToDAG has access to TargetLowering, but not vice versa, so this is
the more general location for these functions.
NFC
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28795
llvm-svn: 292693
There's no neg.f16 instruction, so negation has to
be done via subtraction from zero.
Differential Revision: https://reviews.llvm.org/D28876
llvm-svn: 292452
Summary:
This change also lets us use max.{s,u}16. There's a vague warning in a
test about this maybe being less efficient, but I could not come up with
a case where the resulting SASS (sm_35 or sm_60) was different with or
without max.{s,u}16. It's true that nvcc seems to emit only
max.{s,u}32, but even ptxas 7.0 seems to have no problem generating
efficient SASS from max.{s,u}16 (the casts up to i32 and back down to
i16 seem to be implicit and nops, happening via register aliasing).
In the absence of evidence, better to have fewer special cases, emit
more straightforward code, etc. In particular, if a new GPU has 16-bit
min/max instructions, we want to be able to use them.
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28732
llvm-svn: 292304
Summary: Previously we lowered it literally, to shifts and xors.
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28722
llvm-svn: 292303
Summary:
Avoid an unnecessary conversion operation when using the result of
ctpop.i32 or ctpop.i16 as an i32, as in both cases the ptx instruction
we run returns an i32.
(Previously if we used the value as an i32, we'd do an unnecessary
zext+trunc.)
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28721
llvm-svn: 292302
Summary:
* Disable "ctlz speculation", which inserts a branch on every ctlz(x) which
has defined behavior on x == 0 to check whether x is, in fact zero.
* Add DAG patterns that avoid re-truncating or re-expanding the result
of the 16- and 64-bit ctz instructions.
Reviewers: tra
Subscribers: llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D28719
llvm-svn: 292299
Summary:
Previously there were three ways to inform the NVVMReflect pass whether
you wanted to flush denormals to zero:
* An LLVM command-line option
* Parameters to the NVVMReflect constructor
* Metadata on the module itself.
This change removes the first two, leaving only the third.
The motivation for this change, aside from simplifying things, is that
we want LLVM to be aware of whether it's operating in FTZ mode, so other
passes can use this information. Ideally we'd have a target-generic
piece of metadata on the module. This change moves us in that
direction.
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28700
llvm-svn: 292068
Only scalar half-precision operations are supported at the moment.
- Adds general support for 'half' type in NVPTX.
- fp16 math operations are supported on sm_53+ GPUs only
(can be disabled with --nvptx-no-f16-math).
- Type conversions to/from fp16 are supported on all GPU variants.
- On GPU variants that do not have full fp16 support (or if it's disabled),
fp16 operations are promoted to fp32 and results are converted back
to fp16 for storage.
Differential Revision: https://reviews.llvm.org/D28540
llvm-svn: 291956
Previously we'd always lower @llvm.{sin,cos}.f32 to {sin.cos}.approx.f32
instruction even when unsafe FP math was not allowed.
Clang-generated IR is not affected by this as it uses precise sin/cos
from CUDA's libdevice when unsafe math is disabled.
Differential Revision: https://reviews.llvm.org/D28619
llvm-svn: 291936
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
llvm-svn: 291657