glibc/sysdeps/unix/sysv/linux/x86_64/sigaction.c libc.a(sigaction.o) has a CIE
with the augmentation string "zRS". Support 'S' to allow --icf={safe,all}.
Fix PR36272 and PR46835
A .eh_frame FDE references a text section and (optionally) a LSDA (in
.gcc_except_table). Even if two text sections have identical content and
relocations (e.g. a() and b()), we cannot fold them if their LSDA are different.
```
void foo();
void a() {
try { foo(); } catch (int) { }
}
void b() {
try { foo(); } catch (float) { }
}
```
Scan .eh_frame pieces with LSDA and disallow referenced text sections to be
folded. If two .gcc_except_table have identical semantics (usually identical
content with PC-relative encoding), we will lose folding opportunity.
For ClickHouse (an exception-heavy application), this can reduce --icf=all efficiency
from 9% to 5%. There may be some percentage we can reclaim without affecting
correctness, if we analyze .eh_frame and .gcc_except_table sections.
gold 2.24 implemented a more complex fix (resolution to
https://sourceware.org/bugzilla/show_bug.cgi?id=21066) which combines the
checksum of .eh_frame CIE/FDE pieces.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D84610
This makes it clear `ELF/**/*.cpp` files define things in the `lld::elf`
namespace and simplifies `elf::foo` to `foo`.
Reviewed By: atanasyan, grimar, ruiu
Differential Revision: https://reviews.llvm.org/D68323
llvm-svn: 373885
This patch is mechanically generated by clang-llvm-rename tool that I wrote
using Clang Refactoring Engine just for creating this patch. You can see the
source code of the tool at https://reviews.llvm.org/D64123. There's no manual
post-processing; you can generate the same patch by re-running the tool against
lld's code base.
Here is the main discussion thread to change the LLVM coding style:
https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html
In the discussion thread, I proposed we use lld as a testbed for variable
naming scheme change, and this patch does that.
I chose to rename variables so that they are in camelCase, just because that
is a minimal change to make variables to start with a lowercase letter.
Note to downstream patch maintainers: if you are maintaining a downstream lld
repo, just rebasing ahead of this commit would cause massive merge conflicts
because this patch essentially changes every line in the lld subdirectory. But
there's a remedy.
clang-llvm-rename tool is a batch tool, so you can rename variables in your
downstream repo with the tool. Given that, here is how to rebase your repo to
a commit after the mass renaming:
1. rebase to the commit just before the mass variable renaming,
2. apply the tool to your downstream repo to mass-rename variables locally, and
3. rebase again to the head.
Most changes made by the tool should be identical for a downstream repo and
for the head, so at the step 3, almost all changes should be merged and
disappear. I'd expect that there would be some lines that you need to merge by
hand, but that shouldn't be too many.
Differential Revision: https://reviews.llvm.org/D64121
llvm-svn: 365595
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Previously, we uncompress all compressed sections before doing anything.
That works, and that is conceptually simple, but that could results in
a waste of CPU time and memory if uncompressed sections are then
discarded or just copied to the output buffer.
In particular, if .debug_gnu_pub{names,types} are compressed and if no
-gdb-index option is given, we wasted CPU and memory because we
uncompress them into newly allocated bufers and then memcpy the buffers
to the output buffer. That temporary buffer was redundant.
This patch changes how to uncompress sections. Now, compressed sections
are uncompressed lazily. To do that, `Data` member of `InputSectionBase`
is now hidden from outside, and `data()` accessor automatically expands
an compressed buffer if necessary.
If no one calls `data()`, then `writeTo()` directly uncompresses
compressed data into the output buffer. That eliminates the redundant
memory allocation and redundant memcpy.
This patch significantly reduces memory consumption (20 GiB max RSS to
15 Gib) for an executable whose .debug_gnu_pub{names,types} are in total
5 GiB in an uncompressed form.
Differential Revision: https://reviews.llvm.org/D52917
llvm-svn: 343979
This should resolve the issue that lld build fails in some hosts
that uses case-insensitive file system.
Differential Revision: https://reviews.llvm.org/D43788
llvm-svn: 326339
The profailing style in lld seem to be to not include such empty lines.
Clang-tidy/clang-format seem to handle this just fine.
Differential Revision: https://reviews.llvm.org/D43528
llvm-svn: 325629
Summary:
The COFF linker and the ELF linker have long had similar but separate
Error.h and Error.cpp files to implement error handling. This change
introduces new error handling code in Common/ErrorHandler.h, changes the
COFF and ELF linkers to use it, and removes the old, separate
implementations.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: smeenai, jyknight, emaste, sdardis, nemanjai, nhaehnle, mgorny, javed.absar, kbarton, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39259
llvm-svn: 316624
EhSectionPiece used to have a pointer to a section, but that pointer was
mostly redundant because we almost always know what the section is without
using that pointer. This patch removes the pointer from the struct.
This patch also use uint32_t/int32_t instead of size_t to represent
offsets that are hardly be larger than 4 GiB. At the moment, I think it is
OK even if we cannot handle .eh_frame sections larger than 4 GiB.
Differential Revision: https://reviews.llvm.org/D38012
llvm-svn: 313697
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
We had a few Config member functions that returns configuration values.
For example, we had is64() which returns true if the target is 64-bit.
The return values of these functions are constant and never change.
This patch is to compute them only once to make it clear that they'll
never change.
llvm-svn: 298168
The function was used only within Relocations.cpp, but now we are
using it in many places, so this patch moves it to a file that fits
to the functionality.
llvm-svn: 287943
According to the specification, CIE code alignment factor is an
arbitrary unsigned LEB128 encoded value.
Differential revision: https://reviews.llvm.org/D22954
llvm-svn: 277105
"A zero length string indicates that no augmentation data is present."
The FreeBSD/mips toolchain (GCC 4.2.1) generates .debug_frame sections
containing CIE records that have an empty augmentation string.
Differential Revision: http://reviews.llvm.org/D19928
llvm-svn: 270706