a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
1. Add code to estimate register pressure.
2. Add code to select the unroll factor based on register pressure.
3. Add bits to TargetTransformInfo to provide the number of registers.
llvm-svn: 171469
In order to cost subvector insertion and extraction, we need to know
the type of the subvector being extracted.
No functionality change.
llvm-svn: 171453
We match the pattern "x >= y ? x-y : 0" into "subus x, y" and two special cases
if y is a constant. DAGCombiner canonicalizes those so we first have to undo the
canonicalization for those cases. The pattern occurs in gzip when the loop
vectorizer is enabled. Part of PR14613.
llvm-svn: 170273
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
llvm-svn: 169959
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
llvm-svn: 169954
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
llvm-svn: 169791
There are still bugs in this pass, as well as other issues that are
being worked on, but the bugs are crashers that occur pretty easily in
the wild. Test cases have been sent to the original commit's review
thread.
This reverts the commits:
r169671: Fix a logic error.
r169604: Move the popcnt tests to an X86 subdirectory.
r168931: Initial commit adding the pass.
llvm-svn: 169683
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
llvm-svn: 169536
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
This revision attempts to recognize following population-count pattern:
while(a) { c++; ... ; a &= a - 1; ... },
where <c> and <a>could be used multiple times in the loop body.
TODO: On X8664 and ARM, __buildin_ctpop() are not expanded to a efficent
instruction sequence, which need to be improved in the following commits.
Reviewed by Nadav, really appreciate!
llvm-svn: 168931
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
llvm-svn: 167573
- Replace v4i8/v8i8 -> v8f32 DAG combine with custom lowering to reduce
DAG combine overhead.
- Extend the support to v4i16/v8i16 as well.
llvm-svn: 166487
- If INSERT_VECTOR_ELT is supported (above SSE2, either by custom
sequence of legal insn), transform BUILD_VECTOR into SHUFFLE +
INSERT_VECTOR_ELT if most of elements could be built from SHUFFLE with few
(so far 1) elements being inserted.
llvm-svn: 166288
- Add custom FP_TO_SINT on v8i16 (and v8i8 which is legalized as v8i16 due to
vector element-wise widening) to reduce DAG combiner and its overhead added
in X86 backend.
llvm-svn: 166036
- Besides used in SjLj exception handling, __builtin_setjmp/__longjmp is also
used as a light-weight replacement of setjmp/longjmp which are used to
implementation continuation, user-level threading, and etc. The support added
in this patch ONLY addresses this usage and is NOT intended to support SjLj
exception handling as zero-cost DWARF exception handling is used by default
in X86.
llvm-svn: 165989
- Due to the current matching vector elements constraints in
ISD::FP_ROUND, rounding from v2f64 to v4f32 (after legalization from
v2f32) is scalarized. Add a customized v2f32 widening to convert it
into a target-specific X86ISD::VFPROUND to work around this
constraints.
llvm-svn: 165631
- Due to the current matching vector elements constraints in ISD::FP_EXTEND,
rounding from v2f32 to v2f64 is scalarized. Add a customized v2f32 widening
to convert it into a target-specific X86ISD::VFPEXT to work around this
constraints. This patch also reverts a previous attempt to fix this issue by
recovering the scalarized ISD::FP_EXTEND pattern and thus significantly
reduces the overhead of supporting non-power-2 vector FP extend.
llvm-svn: 165625
- Rewrite/merge pseudo-atomic instruction emitters to address the
following issue:
* Reduce one unnecessary load in spin-loop
previously the spin-loop looks like
thisMBB:
newMBB:
ld t1 = [bitinstr.addr]
op t2 = t1, [bitinstr.val]
not t3 = t2 (if Invert)
mov EAX = t1
lcs dest = [bitinstr.addr], t3 [EAX is implicit]
bz newMBB
fallthrough -->nextMBB
the 'ld' at the beginning of newMBB should be lift out of the loop
as lcs (or CMPXCHG on x86) will load the current memory value into
EAX. This loop is refined as:
thisMBB:
EAX = LOAD [MI.addr]
mainMBB:
t1 = OP [MI.val], EAX
LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
JNE mainMBB
sinkMBB:
* Remove immopc as, so far, all pseudo-atomic instructions has
all-register form only, there is no immedidate operand.
* Remove unnecessary attributes/modifiers in pseudo-atomic instruction
td
* Fix issues in PR13458
- Add comprehensive tests on atomic ops on various data types.
NOTE: Some of them are turned off due to missing functionality.
- Revise tests due to the new spin-loop generated.
llvm-svn: 164281
- Enhance the fix to PR12312 to support wider integer, such as 256-bit
integer. If more than 1 fully evaluated vectors are found, POR them
first followed by the final PTEST.
llvm-svn: 163832