The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
llvm-svn: 198617
This requires a knowledge of the stack size which is not known until
the frame is complete, hence the need for the XCoreFTAOElim pass
which lowers the XCoreISD::FRAME_TO_ARGS_OFFSET instrution into its
final form.
llvm-svn: 198614
Longer term, we want to move users to "*-*-*-macho" for embedded work, but for
now people are relying on the last thing we told them, which is unfortunately
"*-*-darwin-eabi".
rdar://problem/15703934
llvm-svn: 198602
There is a wrong assumption that the vector element type and the
type of each ConstantSDNode in the build_vector were the same.
However, when promoting the integer operand of a legally typed
build_vector, the operand type and the vector element type do not
need to be the same
(See method 'DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR' in
LegalizeIntegerTypes.cpp).
in AArch64 backend, the following dag sequence:
C0: i1 = Constant<0>
C1: i1 = Constant<-1>
V: v8i1 = BUILD_VECTOR C1, C1, C0, C0, C0, C0, C0, C0
is type-legalized into:
NewC0: i32 = Constant<0>
NewC1: i32 = Constant<1>
V: v8i8 = BUILD_VECTOR NewC1, NewC1, NewC0, NewC0, NewC0, NewC0, NewC0, NewC0
Forcing a getZeroExtend to VTBits to ensure that the new constant
is correctly.
llvm-svn: 198582
__builtin_returnaddress requires that the value passed into is be a constant.
However, at -O0 even a constant expression may not be converted to a constant.
Emit an error message intead of crashing.
llvm-svn: 198531
The greedy register allocator tries to split a live-range around each
instruction where it is used or defined to relax the constraints on the entire
live-range (this is a last chance split before falling back to spill).
The goal is to have a big live-range that is unconstrained (i.e., that can use
the largest legal register class) and several small local live-range that carry
the constraints implied by each instruction.
E.g.,
Let csti be the constraints on operation i.
V1=
op1 V1(cst1)
op2 V1(cst2)
V1 live-range is constrained on the intersection of cst1 and cst2.
tryInstructionSplit relaxes those constraints by aggressively splitting each
def/use point:
V1=
V2 = V1
V3 = V2
op1 V3(cst1)
V4 = V2
op2 V4(cst2)
Because of how the coalescer infrastructure works, each new variable (V3, V4)
that is alive at the same time as V1 (or its copy, here V2) interfere with V1.
Thus, we end up with an uncoalescable copy for each split point.
To make tryInstructionSplit less aggressive, we check if the split point
actually relaxes the constraints on the whole live-range. If it does not, we do
not insert it.
Indeed, it will not help the global allocation problem:
- V1 will have the same constraints.
- V1 will have the same interference + possibly the newly added split variable
VS.
- VS will produce an uncoalesceable copy if alive at the same time as V1.
<rdar://problem/15570057>
llvm-svn: 198369
For AArch64 backend, if DAGCombiner see "sext(setcc)", it will
combine them together to a single setcc with extended value type.
Then if it see "zext(setcc)", it assumes setcc is Vxi1, and try to
create "(and (vsetcc), (1, 1, ...)". While setcc isn't Vxi1,
DAGcombiner will create wrong node and get wrong code emitted.
llvm-svn: 198190
Schedule more conservatively to account for stalls on floating point
resources and latency. Use the AGU resource to model latency stalls
since it's shared between FP and LD/ST instructions. This might not be
completely accurate but should work well in practice.
llvm-svn: 198125
vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.
Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.
This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.
Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.
llvm-svn: 198113
ConstantSDNodes (or UNDEFs) into a simple BUILD_VECTOR.
For example, given the following sequence of dag nodes:
i32 C = Constant<1>
v4i32 V = BUILD_VECTOR C, C, C, C
v4i32 Result = SIGN_EXTEND_INREG V, ValueType:v4i1
The SIGN_EXTEND_INREG node can be folded into a build_vector since
the vector in input is a BUILD_VECTOR of constants.
The optimized sequence is:
i32 C = Constant<-1>
v4i32 Result = BUILD_VECTOR C, C, C, C
llvm-svn: 198084
...namely LOAD AND ADD, LOAD AND AND, LOAD AND OR and LOAD AND EXCLUSIVE OR.
LOAD AND ADD LOGICAL isn't really separately useful for LLVM.
I'll look at adding reusing the CC results in new year.
llvm-svn: 197985
DAG.getVectorShuffle() doesn't always return a vector_shuffle node.
If mask is the exact sequence of it's operand(For example, operand_0
is v8i8, and the mask is 0, 1, 2, 3, 4, 5, 6, 7), it will directly
return that operand. So a check is added here.
llvm-svn: 197967
This failure caused by improper condition when lowering shuffle_vector
to scalar_to_vector. After this patch NEON_VDUP with v1i64 will not
be generated.
llvm-svn: 197966
Check for single use of fmul node in fused multiply patterns
to allow generation of fused multiply add/sub instructions.
Otherwise fmul operation ends up being repeated more than
once which does not help peformance on targets with
only one MAC unit, as for example cortex-a53.
llvm-svn: 197929
The correct pattern matching should be:
- fnmadd is (-Ra) + (-Rn)*Rm which should be matched as:
fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm))))
- fnmsub is (-Ra) + Rn*Rm which should be matched as
fma node:$Rn, node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra))))
llvm-svn: 197928