Summary:
This change generalizes the implicit null checks pass to work with
instructions that don't have any explicit register defs. This lets us
use X86's `cmp` against memory as faulting load instructions.
Reviewers: reames, JosephTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11286
llvm-svn: 242703
Summary:
The MUBUF addr64 bit has been removed on VI, so we must use FLAT
instructions when the pointer is stored in VGPRs.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11067
llvm-svn: 242673
Reordered the data tables at the top and placed the lookups after. The first stage in the yak shaving necessary to get more accurate costs for a variety of targets given the recent improvements to SINT_TO_FP/UINT_TO_FP/SIGN_EXTEND vector lowering.
llvm-svn: 242643
canFoldMemoryOperand is not actually used anywhere in the codebase - all existing users instead call foldMemoryOperand directly when they wish to fold and can correctly deduce what they need from the return value.
This patch removes the canFoldMemoryOperand base function and the target implementations; only x86 had a real (bit-rotted) implementation, although AMDGPU had a preparatory stub that had never needed to be completed.
Differential Revision: http://reviews.llvm.org/D11331
llvm-svn: 242638
SKX supports conversion for all FP types. Integer types include doublewords and quardwords.
I added "Legal" status for these nodes and a bunch of tests.
I added "NoVLX" for AVX DAG selection to force VLX instructions selection when VLX is supported.
Differential Revision: http://reviews.llvm.org/D11255
llvm-svn: 242637
The standard containers are not designed to be inherited from, as
illustrated by the MSVC hacks for NodeOrdering. No functional change
intended.
llvm-svn: 242616
Reapply r242500 now that the swift schedmodel includes LDRLIT.
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Differential Revision: http://reviews.llvm.org/D10513
llvm-svn: 242588
These pseudo instructions are only lowered after register allocation and
are therefore still present when the machine scheduler runs.
Add a run: line to a testcase that uses the uncommon flags necessary to
actually produce a LDRLIT instruction on swift.
llvm-svn: 242587
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Differential Revision: http://reviews.llvm.org/D10513
llvm-svn: 242500
Constructing a name based on the function name didn't give us a unique
symbol if we had more than one setjmp in a function. Using
MCContext::createTempSymbol() always gives us a unique name.
Differential Revision: http://reviews.llvm.org/D9314
llvm-svn: 242482
llvm.eh.sjlj.setjmp was used as part of the SjLj exception handling
style but is also used in clang to implement __builtin_setjmp. The ARM
backend needs to output additional dispatch tables for the SjLj
exception handling style, these tables however can't be emitted if
llvm.eh.sjlj.setjmp is simply used for __builtin_setjmp and no actual
landing pad blocks exist.
To solve this issue a new llvm.eh.sjlj.setup_dispatch intrinsic is
introduced which is used instead of llvm.eh.sjlj.setjmp in the SjLj
exception handling lowering, so we can differentiate between the case
where we actually need to setup a dispatch table and the case where we
just need the __builtin_setjmp semantic.
Differential Revision: http://reviews.llvm.org/D9313
llvm-svn: 242481
C11 leaves the choice on whether round-to-integer operations set the inexact
flag implementation-defined. Darwin does expect it to be set, but this seems to
be against the intent of the IEEE document and slower to implement anyway. So
it should be opt-in.
llvm-svn: 242446
I was looking at some vector code generation and kept seeing
unnecessary vector copies into the Altivec half of the VSX registers.
I discovered that we overlooked v4i32 when adding the register classes
for VSX; we only added v4f32 and v2f64. This means that anything that
canonicalizes into v4i32 (which is a LOT of stuff) ends up being
forced into VRRC on its way to VSRC.
The fix is one line. The rest of the patch is fixing up some test
cases whose code generation has changed as a result.
This seems like it would be a good candidate for backport to 3.7.
llvm-svn: 242442
Summary:
SpeculativeExecution enables a series straight line optimizations (such
as SLSR and NaryReassociate) on conditional code. For example,
if (...)
... b * s ...
if (...)
... (b + 1) * s ...
speculative execution can hoist b * s and (b + 1) * s from then-blocks,
so that we have
... b * s ...
if (...)
...
... (b + 1) * s ...
if (...)
...
Then, SLSR can rewrite (b + 1) * s to (b * s + s) because after
speculative execution b * s dominates (b + 1) * s.
The performance impact of this change is significant. It speeds up the
benchmarks running EigenFloatContractionKernelInternal16x16
(ba68f42fa6/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h?at=default#cl-526)
by roughly 2%. Some internal benchmarks that have the above code pattern
are improved by up to 40%. No significant slowdowns are observed on
Eigen CUDA microbenchmarks.
Reviewers: jholewinski, broune, eliben
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11201
llvm-svn: 242437
This is a new iteration of the reverted r238793 /
http://reviews.llvm.org/D8232 which wrongly assumed that any and/or
trees can be represented by conditional compare sequences, however there
are some restrictions to that. This version fixes this and adds comments
that explain exactly what types of and/or trees can actually be
implemented as conditional compare sequences.
Related to http://llvm.org/PR20927, rdar://18326194
Differential Revision: http://reviews.llvm.org/D10579
llvm-svn: 242436
Summary:
We can safely assume that the high bit of scratch offsets will never
be set, because this would require at least 128 GB of GPU memory.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11225
llvm-svn: 242433
This reverts commit r242300.
This is causing buildbot failures which we are investigating.
I'll reapply once we know whats going on, but for now want to
get the bots green.
llvm-svn: 242428
Summary:
This fixes an issue on MIPS where the infinite-loop-evergreen.ll test
was failing to terminate.
Fixes PR24147.
Reviewers: arsenm, dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11260
llvm-svn: 242410
This allows more call sequences to use pushes instead of movs when optimizing for size.
In particular, calling conventions that pass some parameters in registers (e.g. thiscall) are now supported.
This should no longer cause miscompiles, now that a bug in emitPrologue was fixed in r242395.
llvm-svn: 242398
When X86FrameLowering::emitPrologue() looks for where to insert the %esp subtraction
to allocate stack space for local allocations, it assumes that any sequence of push
instructions that starts at function entry consists purely of spills of callee-save
registers.
This may be false, since from some point forward, the pushes may pushing arguments
to a subsequent function call.
This caused a miscompile that was exposed by r240257, and is not easily testable
since r240257 was reverted. A test will be committed separately after r240257 is
reapplied.
llvm-svn: 242395
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11079
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242385
pairs for 32-bit immediates.
This change is needed to avoid emitting movt/movw pairs when doing LTO
and do so on a per-function basis.
Out-of-tree projects currently using cl::opt option -arm-use-movt=0 or
false to avoid emitting movt/movw pairs should make changes to add
subtarget feature "+no-movt" (see the changes made to clang in r242368).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11026
llvm-svn: 242369
The pass here was clearing kill flags on instructions which had
their sources killed in the instruction being combined. But
given that the new instruction is inserted after the existing ones,
any existing instructions with kill flags will lead to the verifier
complaining that we are reading an undefined physreg.
For example, what we had prior to this optimization is
t2STRi12 %R1, %SP, 12
t2STRi12 %R1<kill>, %SP, 16
t2STRi12 %R0<kill>, %SP, 8
and prior to this fix that would generate
t2STRi12 %R1<kill>, %SP, 16
t2STRDi8 %R0<kill>, %R1, %SP, 8
This is clearly incorrect as it didn't clear the kill flag on R1
used with offset 16 because there was no kill flag on the instruction
with offset 12.
After this change we clear the kill flag on the offset 16 instruction
because we know it will be used afterwards in the new instruction.
I haven't provided a test case. I have a small test, but even it is
very sensitive to register allocation order which isn't ideal.
llvm-svn: 242359
Pass a const reference to LiveRegMatrix to getRegAllocationHints()
because some targets can prodive better hints if they can test whether a
physreg has been used for register allocation yet.
llvm-svn: 242340
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
llvm-svn: 242300
The vec_sld interface provides access to the vsldoi instruction.
Unlike most of the vec_* interfaces, we do not attempt to change the
generated code for vec_sld based on the endian mode. It is too
difficult to correctly infer the desired semantics because of
different element types, and the corrected instruction sequence is
expensive, involving loading a permute control vector and performing a
generalized permute.
For GCC, this was implemented as "Don't touch the vec_sld"
implementation. When it came time for the LLVM implementation, I did
the same thing. However, this was hasty and incorrect. In LLVM's
version of altivec.h, vec_sld was previously defined in terms of the
vec_perm interface. Because vec_perm semantics are adjusted for
little endian, this means that leaving vec_sld untouched causes it to
generate something different for LE than for BE. Not good.
This back-end patch accompanies the changes to altivec.h that change
vec_sld's behavior for little endian. Those changes mean that we see
slightly different code in the back end when trying to recognize a
VSLDOI instruction in isVSLDOIShuffleMask. In particular, a
ShuffleKind of 1 (where the two inputs are identical) must now be
treated the same way as a ShuffleKind of 2 (little endian with
different inputs) when little endian mode is in force. This is
because ShuffleKind of 1 is defined using big-endian numbering.
This has a ripple effect on LowerBUILD_VECTOR, where we create our own
internal VSLDOI instructions. Because these are a ShuffleKind of 1,
they will now have their shift amounts subtracted from 16 when
recognizing the shuffle mask. To avoid problems we have to subtract
them from 16 again before creating the VSLDOI instructions.
There are a couple of other uses of BuildVSLDOI, but these do not need
to be modified because the shift amount is 8, which is unchanged when
subtracted from 16.
llvm-svn: 242296
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 242295
This is a direct port of the code from the X86 backend (r239486/r240361), which
uses the MachineCombiner to reassociate (floating-point) adds/muls to increase
ILP, to the PowerPC backend. The rationale is the same.
There is a lot of copy-and-paste here between the X86 code and the PowerPC
code, and we should extract at least some of this into CodeGen somewhere.
However, I don't want to do that until this code is enhanced to handle FMAs as
well. After that, we'll be in a better position to extract the common parts.
llvm-svn: 242279
If the source of the copy that defines the addend is a physical register, then
its existing live range may not extend to the FMA being mutated. Make sure we
extend the live range of the register to meet the FMA because it will become
its operand in this case.
I don't have an independent test case, but it will be exposed by change to be
committed shortly enabling the use of the machine combiner to do fadd/fmul
reassociation, and will be covered by one of the associated regression tests.
llvm-svn: 242278
Bitpatterns rejected by the decoder method of `MSR (immediate)` should be
decoded as the `extended MSR (register)` instruction.
Differential Revision: http://reviews.llvm.org/D7174
llvm-svn: 242276
This code was breaking from the case statement if the getStoreSizeInBits()
value was not a multiple of 0. Given that the implementation returns
getStoreSize() * 8, it can only be a multiple of 8.
llvm-svn: 242255
Summary:
processFunctionBeforeCalleeSavedScan was renamed to determineCalleeSaves and now takes a BitVector parameter as of rL242165, reviewed in http://reviews.llvm.org/D10909
WebAssembly is still marked as experimental and therefore doesn't build by default. It does, however, grep by default! I notice that processFunctionBeforeCalleeSavedScan is still mentioned in a few comments and error messages, which I also fixed.
Reviewers: qcolombet, sunfish
Subscribers: jfb, dsanders, hfinkel, MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D11199
llvm-svn: 242242
Follow-up r235483, with the corresponding support in PPC. We use a regular call
for symbolic targets (because they're much cheaper than indirect calls).
llvm-svn: 242239
We used to take the address specified as the direct target of the patchpoint
and did no TOC-pointer handling. This, however, as not all that useful,
because MCJIT tends to create a lot of modules, and they have their own TOC
sections. Thus, to call from the generated code to other generated code, you
really need to switch TOC pointers. Make this work as expected, and under
ELFv1, tread the address as the function descriptor address so that the correct
TOC pointer can be loaded.
llvm-svn: 242217
SelectionDAG already had begin/end methods for iterating over all
the nodes, but didn't define an iterator_range for us in foreach
loops.
This adds such a method and uses it in some of the eligible places
throughout the backends.
llvm-svn: 242212
Summary: This patch has the most basic instruction codegen for 32 and 64 bit int/fp.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11193
llvm-svn: 242201
MOVSDto64rr and MOV64toSDrr are defined to convert between FR64 (%xmm)
<-> GR64 registers, not VR64 (%mm) <-> GR64. This is wrong.
I found this by inspection and could not find a suitable testcase for it
since (1) we don't handle MMX bitcasts in Peephole optimizer as to
generate COPYs that (2) could be expanded back to the appropriate x86
instruction in ExpandPostRA.
Switch to use the appropriate instructions: MMX_MOVD64from64rr and
MMX_MOVD64to64rr here.
llvm-svn: 242191
PowerPC uses itineraries to describe processor pipelines (and dispatch-group
restrictions for P7/P8 cores). Unfortunately, the target-independent
implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that
looks for the largest cycle count in the pipeline for any given instruction.
This, however, yields the wrong answer for the PPC itineraries, because we
don't encode the full pipeline. Because the functional units are fully
pipelined, we only model the initial stages (there are no relevant hazards in
the later stages to model), and so the technique employed by getStageLatency
does not really work. Instead, we should take the maximum output operand
latency, and that's what PPCInstrInfo::getInstrLatency now does.
This caused some test-case churn, including two unfortunate side effects.
First, the new arrangement of copies we get from function parameters now
sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the
test cases), and we have one significant test-suite regression:
SingleSource/Benchmarks/BenchmarkGame/spectral-norm
56.4185% +/- 18.9398%
In this benchmark we have a loop with a vectorized FP divide, and it with the
new scheduling both divides end up in the same dispatch group (which in this
case seems to cause a problem, although why is not exactly clear). The grouping
structure is hard to predict from the bottom of the loop, and there may not be
much we can do to fix this.
Very few other test-suite performance effects were really significant, but
almost all weakly favor this change. However, in light of the issues
highlighted above, I've left the old behavior available via a
command-line flag.
llvm-svn: 242188
This can be done only with moves which theoretically
will optimize better later.
Although this transform increases the instruction count,
it should be code size / cycle count neutral in the worst
VALU case. It also seems to slightly improve a couple
of testcases due to other DAG combines this exposes.
This is probably slightly worse for the SALU case, so
it might be better to handle this during moveToVALU,
although then you lose some simplifications like
the load width reducing in the simple testcase.
llvm-svn: 242177
If the read2 produced was supposed to be writing into a
super register, it would use the wrong subregister indices.
Fix this by inserting copies, so we only ever write to a vreg_64.
Run the register coalescer again to clean this up, although this
isn't ideal and often does result in an extra move.
Also remove the assert that offset1 > offset0.
There isn't a real reason to not allow this other than a minor
convenience in the compiler, and it doesn't seem worth the effort
of avoiding it.
llvm-svn: 242174
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
llvm-svn: 242173
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
Summary:
- Signed 16-bit should have priority over unsigned.
- For la, unsigned 16-bit must use ori+addu rather than directly use ori.
- Correct tests on 32-bit immediates with 64-bit predicates by
sign-extending the immediate beforehand. For example, isInt<16>(0xffff8000)
should be true and use addiu.
Also split li/la testing into separate files due to their size.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10967
llvm-svn: 242139
This patch allows VSX swap optimization to succeed more frequently.
Specifically, it is concerned with common code sequences that occur
when copying a scalar floating-point value to a vector register. This
patch currently handles cases where the floating-point value is
already in a register, but does not yet handle loads (such as via an
LXSDX scalar floating-point VSX load). That will be dealt with later.
A typical case is when a scalar value comes in as a floating-point
parameter. The value is copied into a virtual VSFRC register, and
then a sequence of SUBREG_TO_REG and/or COPY operations will convert
it to a full vector register of the class required by the context. If
this vector register is then used as part of a lane-permuted
computation, the original scalar value will be in the wrong lane. We
can fix this by adding a swap operation following any widening
SUBREG_TO_REG operation. Additional COPY operations may be needed
around the swap operation in order to keep register assignment happy,
but these are pro forma operations that will be removed by coalescing.
If a scalar value is otherwise directly referenced in a computation
(such as by one of the many XS* vector-scalar operations), we
currently disable swap optimization. These operations are
lane-sensitive by definition. A MentionsPartialVR flag is added for
use in each swap table entry that mentions a scalar floating-point
register without having special handling defined.
A common idiom for PPC64LE is to convert a double-precision scalar to
a vector by performing a splat operation. This ensures that the value
can be referenced as V[0], as it would be for big endian, whereas just
converting the scalar to a vector with a SUBREG_TO_REG operation
leaves this value only in V[1]. A doubleword splat operation is one
form of an XXPERMDI instruction, which takes one doubleword from a
first operand and another doubleword from a second operand, with a
two-bit selector operand indicating which doublewords are chosen. In
the general case, an XXPERMDI can be permitted in a lane-swapped
region provided that it is properly transformed to select the
corresponding swapped values. This transformation is to reverse the
order of the two input operands, and to reverse and complement the
bits of the selector operand (derivation left as an exercise to the
reader ;).
A new test case that exercises the scalar-to-vector and generalized
XXPERMDI transformations is added as CodeGen/PowerPC/swaps-le-5.ll.
The patch also requires a change to CodeGen/PowerPC/swaps-le-3.ll to
use CHECK-DAG instead of CHECK for two independent instructions that
now appear in reverse order.
There are two small unrelated changes that are added with this patch.
First, the XXSLDWI instruction was incorrectly omitted from the list
of lane-sensitive instructions; this is now fixed. Second, I observed
that the same webs were being rejected over and over again for
different reasons. Since it's sufficient to reject a web only once, I
added a check for this to speed up the compilation time slightly.
llvm-svn: 242081
Enable partial and runtime loop unrolling for NVPTX backend via
TTI::UnrollingPreferences with a small threshold. This partially unrolls
small loops which are often unrolled by the PTX to SASS compiler
and unrolling earlier can be beneficial.
llvm-svn: 242049
The two-address instruction pass will convert these back to v_mad_f32
if necessary.
Differential Revision: http://reviews.llvm.org/D11060
llvm-svn: 242038
The 64/128-bit vector types are legal if NEON instructions are
available. However, there was no matching patterns for @llvm.cttz.*()
intrinsics and result in fatal error.
This commit fixes the problem by lowering cttz to:
a. ctpop((x & -x) - 1)
b. width - ctlz(x & -x) - 1
llvm-svn: 242037
In this patch I have only encoding. Intrinsics and DAG lowering will be in the next patch.
I temporary removed the old intrinsics test (just to split this patch).
Half types are not covered here.
Differential Revision: http://reviews.llvm.org/D11134
llvm-svn: 242023
Register r12 ('ip') is used by GCC for this purpose
and hence is used here. As discussed on the GCC mailing
list, the register choice is an ABI issue and so
choosing the same register as GCC means
__builtin_call_with_static_chain is compatible.
A similar patch has just gone in the AArch64 backend,
so this is just the ARM counterpart, following the same
discussion.
Patch by Stephen Cross.
llvm-svn: 241996
While the v4i32 shl operation is already vectorized using a cvttps2dq/pmulld pattern, the lshr/ashr opeations are still scalarized.
This patch adds vectorization support for non-uniform v4i32 shift operations - it splats constant shift amounts to allow them to use the immediate sse shift instructions, or extracts/zero-extends non-constant shift amounts. The individual results are then blended together.
Differential Revision: http://reviews.llvm.org/D11063
llvm-svn: 241989
r238842 added the TargetRecip system for controlling use of reciprocal
estimates for sqrt and division using a set of parameters that can be set by
the frontend. Clang now supports a sophisticated -mrecip option, and this will
allow that option to effectively control the relevant code-generation
functionality of the PPC backend.
llvm-svn: 241985
This adds support for the 'nest' attribute, which allows the static chain
register to be set for functions calls under non-Darwin PPC/PPC64 targets. r11
is the chain register (which the PPC64 ELF ABI calls the "environment
pointer"). For indirect calls under PPC64 ELFv1, this would normally be loaded
from the function descriptor, but providing an explicit 'nest' parameter will
override that process and use the value provided.
This allows __builtin_call_with_static_chain to work as expected on PowerPC.
llvm-svn: 241984
Disallow all mutation of `MCSubtargetInfo` expect the feature bits.
Besides deleting the assignment operators -- which were dead "code" --
this restricts `InitMCProcessorInfo()` to subclass initialization
sequences, and exposes a new more limited function called
`setDefaultFeatures()` for use by the ARMAsmParser `.cpu` directive.
There's a small functional change here: ARMAsmParser used to adjust
`MCSubtargetInfo::CPUSchedModel` as a side effect of calling
`InitMCProcessorInfo()`, but I've removed that suspicious behaviour.
Since the AsmParser shouldn't be doing any scheduling, there shouldn't
be any observable change...
llvm-svn: 241961
Most loads and stores are derived from pointers derived from
a kernel argument load inserted during argument lowering.
This was just using the EntryToken chain for the argument loads,
and any users of these loads were also on the EntryToken chain.
Return the chain of the lowered argument load so that dependent loads
end up on the correct chain.
No test since I'm not aware of any case where this actually
broke.
llvm-svn: 241960
Force all creators of `MCSubtargetInfo` to immediately initialize it,
merging the default constructor and the initializer into an initializing
constructor. Besides cleaning up the code a little, this makes it clear
that the initializer is never called again later.
Out-of-tree backends need a trivial change: instead of calling:
auto *X = new MCSubtargetInfo();
InitXYZMCSubtargetInfo(X, ...);
return X;
they should call:
return createXYZMCSubtargetInfoImpl(...);
There's no real functionality change here.
llvm-svn: 241957
Remove all calls to `MCSubtargetInfo::InitCPUSched()` and merge its body
into the only relevant caller, `MCSubtargetInfo::InitMCProcessorInfo()`.
We were only calling the former after explicitly calling the latter with
the same CPU; it's confusing to have both methods exposed.
Besides a minor (surely unmeasurable) speedup in ARM and X86 from
avoiding running the logic twice, no functionality change.
llvm-svn: 241956
Fixes PR23804: assertion failure in emitPrologue in the case of a
function with an empty frame and a dynamic alloca that needs stack
realignment. This is a typical case for AddressSanitizer.
llvm-svn: 241943
Summary:
Following the discussion on r241884, it's more reasonable to assume that a
target has no vector registers by default instead of letting every such
target overrides getNumberOfRegisters.
Therefore, this patch modifies BasicTTIImpl::getNumberOfRegisters to
return 0 when Vector is true, and partially reverts r241884 which
modifies NVPTXTTIImpl::getNumberOfRegisters.
It also fixes a performance bug in LoopVectorizer. Even if a target has
no vector registers, vectorization may still help ILP. So, we need both
checks to be false before disabling loop vectorization all together.
Reviewers: hfinkel
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11108
llvm-svn: 241942
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
llvm-svn: 241928
Summary:
This code is based on AArch64 for modern backend good practice, and NVPTX for
virtual ISA concerns.
Reviewers: sunfish
Subscribers: aemerson, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11070
llvm-svn: 241923
Summary:
The target frame lowering's concrete type is always known in RegisterInfo, yet it's only sometimes devirtualized through a static_cast. This change adds an auto-generated static function <Target>GenRegisterInfo::getFrameLowering(const MachineFunction &MF) which does this devirtualization, and uses this function in all targets which can.
This change was suggested by sunfish in D11070 for WebAssembly, I figure that I may as well improve the other targets while I'm here.
Subscribers: sunfish, ted, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11093
llvm-svn: 241921
This improves the logic in several ways and is a preparation for
followup patches:
- First perform an analysis and create a list of merge candidates, then
transform. This simplifies the code in that you have don't have to
care to much anymore that you may be holding iterators to
MachineInstrs that get removed.
- Analyze/Transform basic blocks in reverse order. This allows to use
LivePhysRegs to find free registers instead of the RegisterScavenger.
The RegisterScavenger will become less precise in the future as it
relies on the deprecated kill-flags.
- Return the newly created node in MergeOps so there's no need to look
around in the schedule to find it.
- Rename some MBBI iterators to InsertBefore to make their role clear.
- General code cleanup.
Differential Revision: http://reviews.llvm.org/D10140
llvm-svn: 241920
Summary:
Without this patch, LoopVectorizer in certain cases (see loop-vectorize.ll)
produces code with complex control flow which hurts later optimizations. Since
NVPTX doesn't have vector registers in LLVM's sense
(NVPTXTTI::getRegisterBitWidth(true) == 32), we for now declare no vector
registers to effectively disable loop vectorization.
Reviewers: jholewinski
Subscribers: jingyue, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11089
llvm-svn: 241884
Apparently this is important, otherwise _except_handler3 assumes that
the registration node is corrupted and ignores it.
Also fix a bug in WinEHPrepare where we would insert code after a
terminator instruction.
llvm-svn: 241877
The runtime does not restore CSRs when transferring control back to the
function handling the exception. According to the experts on IRC, LLVM's
register allocator has no way to model register clobbers that only
happen on one edge of the CFG. For now, don't worry about trying to use
the meager three CSRs available on 32-bit X86 and just say that such
invokes preserve nothing.
llvm-svn: 241865
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
llvm-svn: 241806
The nest attribute is currently supported on the x86 (32-bit) and x86-64
backends, but not on ARM (32-bit) or AArch64. This patch adds support for
nest to the AArch64 backend.
Register x18 is used by GCC for this purpose and hence is used here.
As discussed on the GCC mailing list the register choice is an ABI issue
and so choosing the same register as GCC means __builtin_call_with_static_chain
is compatible.
Patch by Stephen Cross.
llvm-svn: 241794
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
llvm-svn: 241790
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11038
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241777
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11021
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241774
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241773
All the usual X86 target-specific conventions are collapsed to the
normal Win64 convention, but the custom conventions like GHC and webkit
should not be.
Previously we would assume that the caller allocated 32 bytes of shadow
space for us, which is not how webkit_jscc or other custom conventions
are supposed to work.
Based on a patch by peavo@outlook.com.
Fixes PR24051.
llvm-svn: 241725
The 32-bit lowering assumed that WinEHPrepare had this invariant.
WinEHPrepare did it for C++, but not SEH. The result was that we would
insert calls to llvm.x86.seh.restoreframe in normal basic blocks, which
corrupted the frame pointer.
llvm-svn: 241699
- Implement copying ASR to/from GPR regs.
- Mark ASRs as non-allocatable, so it won't try to arbitrarily use
them inappropriately.
- Instead of inserting explicit WRASR/RDASR nodes in the MUL/DIV
routines, just do normal register copies.
- Also...mark div as using Y, not just writing it.
Added a test case with some code which previously died with an
assertion failure (with -O0), or produced wrong code (otherwise).
(Third time's the charm?)
Differential Revision: http://reviews.llvm.org/D10401
llvm-svn: 241686
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11017
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241655
The incoming EBP value points to the end of a local stack allocation, so
we can use that to restore ESI, the base pointer. Once we do that, we
can use local stack allocations. If we know we need stack realignment,
spill the original frame pointer in the prologue and reload it after
restoring ESI.
llvm-svn: 241648
Tim Northover has told me that they can occur when the compiler cleverly
constructs constants - as demonstrated in the test case.
rdar://21703486
llvm-svn: 241641
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.
These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.
Naming suggestions at this point are welcome, I'm happy to re-run sed.
Reviewers: majnemer, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11011
llvm-svn: 241633
This type of prologue isn't supported yet. Implementing it should be a
matter of copying the adjusted incoming EBP into ESI (the base pointer)
instead of EBP. The original EBP can be saved and restored from other
memory afterwards.
llvm-svn: 241597
This includes code that is intended to be target-independent as well
as the Hexagon-specific details. This is just the framework without
any users.
llvm-svn: 241595
be emitted.
This is needed to enable ARM long calls for LTO and enable and disable it on a
per-function basis.
Out-of-tree projects currently using EnableARMLongCalls to emit long calls
should start passing "+long-calls" to the feature string (see the changes made
to clang in r241565).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D9364
llvm-svn: 241566
The vperm2f128/vperm2i128 shuffle mask decoding was not attempting to deal with shuffles that give zero lanes. This patch fixes this so that the assembly printer can provide shuffle comments.
As this decoder is also used in X86ISelLowering for shuffle combining, I've added an early-out to match existing behaviour. The hope is that we can add zero support in the future, this would allow other ops' decodes (e.g. insertps) to be combined as well.
Differential Revision: http://reviews.llvm.org/D10593
llvm-svn: 241516
Extend the reassociation optimization of http://reviews.llvm.org/rL240361 (D10460)
to SSE scalar FP SP adds in addition to AVX scalar FP SP adds.
With the 'switch' in place, we can trivially add other opcodes and test cases in
future patches.
Differential Revision: http://reviews.llvm.org/D10975
llvm-svn: 241515
This patch adds vectorization support for uniform constant i64 arithmetic shift right operators.
Differential Revision: http://reviews.llvm.org/D9645
llvm-svn: 241514
This patch adds support for v8i16 and v16i8 shuffle lowering using the immediate versions of the SSE4A EXTRQ and INSERTQ instructions. Although rather limited (they can only act on the lower 64-bits of the source vectors, leave the upper 64-bits of the result vector undefined and don't have VEX encoded variants), the instructions are still useful for the zero extension of any lane (EXTRQ) or inserting a lane into another vector (INSERTQ). Testing demonstrated that it wasn't typically worth it to use these instructions for v2i64 or v4i32 vector shuffles although they are capable of it.
As well as adding specific pattern matching for the shuffles, the patch uses EXTRQ for zero extension cases where SSE41 isn't available and its more efficient than the SSE2 'unpack' default approach. It also adds shuffle decode support for the EXTRQ / INSERTQ cases when the instructions are handling full byte-sized extractions / insertions.
From this foundation, future patches will be able to make use of the instructions for situations that use their ability to extract/insert at the bit level.
Differential Revision: http://reviews.llvm.org/D10146
llvm-svn: 241508
With the completion of D9746 there is now a common implementation of integer signed/unsigned min/max nodes, removing the need for the equivalent X86 specific implementations.
This patch removes the old X86ISD nodes, legalizes the relevant SSE2/SSE41/AVX2/AVX512 instructions for the ISD versions and converts the small amount of existing X86 code.
Differential Revision: http://reviews.llvm.org/D10947
llvm-svn: 241506
This commit adds a 'run-pass' option to llc, which instructs the compiler to run
one specific code generation pass only.
Llc already has the 'start-after' and the 'stop-after' options, and this new
option complements the other two by making it easier to write tests that want
to invoke a single pass only.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10776
llvm-svn: 241476
Running this after the scheduler enables scheduling
waits later so other ALU instructions can run while
this would be waiting.
When combined with enabling the post-RA scheduler, this
gives about a ~20% improvement on sgemm.
llvm-svn: 241473
Summary:
This concludes the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
At this point, the StringRef-form of GNU Triples should only be used in the
public API (including IR serialization) and a couple objects that directly
interact with the API (most notably the Module class). The next step is to
replace these Triple objects with the TargetTuple object that will represent
our authoratative/unambiguous internal equivalent to GNU Triples.
Reviewers: rengolin
Subscribers: llvm-commits, jholewinski, ted, rengolin
Differential Revision: http://reviews.llvm.org/D10962
llvm-svn: 241472
We don't have a good way to detect most situations where
DS offsets are usable on SI, so add an option to force using
them even if unsafe for debugging performance problems.
llvm-svn: 241462
These are mostly from the chart in the SparcV8 spec, section "A.3
Synthetic Instructions".
Differential Revision: http://reviews.llvm.org/D9834
llvm-svn: 241461
The code in AArch64A57FPLoadBalancing::scavengeRegister() to handle dead defs
was not correctly handling aliased registers. E.g. if the dead def was of D2,
then S2 was not being marked as unavailable, so it could potentially be used
across a live-range in which it would be clobbered.
Patch by Geoff Berry <gberry@codeaurora.org>!
Phabricator: http://reviews.llvm.org/D10900
llvm-svn: 241449
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
Correctly support assembling "pushw $imm8" on x86-64 targets.
Also some cleanup of the PUSH instructions (PUSH64i16 and PUSHi16 actually
represent the same instruction)
This fixes PR23996
Patch by: david.l.kreitzer@intel.com
Differential Revision: http://reviews.llvm.org/D10878
llvm-svn: 241404
Followup to D10433 and D10589 that fixes i8/i16 uint2fp vector conversions by zero extending to i32 and using the sint2fp path (unless the target does actually support uint2fp).
llvm-svn: 241394
Add support for v2i8/v2i16 to v2f64 by using a sign extension to v2i32 before conversion to v2f64.
Differential Revision: http://reviews.llvm.org/D10589
llvm-svn: 241325
This patch adds support for sign extension for sub 128-bit vectors, such as to v2i32. It concatenates with UNDEF subvectors up to 128-bits, performs the sign extension (i.e. as v4i32) and then extracts the target subvector.
Patch 1/2 of D10589 - the second patch covers the conversion of v2i8/v2i16 to v2f64.
llvm-svn: 241323
This function can really fail since the string table offset can be out of
bounds.
Using ErrorOr makes sure the error is checked.
Hopefully a lot of the boilerplate code in tools/* can go away once we have
a diagnostic manager in Object.
llvm-svn: 241297
In r241285, I removed the SUBREG_TO_REG restriction from VSX swap
removal, determining that this was overly conservative. We have
another form of the same restriction in that we check for the presence
of implicit subregs in vector operations. As with SUBREG_TO_REG for
partial register conversions, an implicit subreg is safe in and of
itself, provided no other operation makes a lane-sensitive assumption
about the result. This patch removes that restriction, by removing
the HasImplicitSubreg flag and all code that relies on it.
I've added a test case that fails to optimize before this patch is
applied, and optimizes properly with the patch. Test based on a
report from Anton Blanchard.
llvm-svn: 241290
With a previous patch, the VSX swap optimization is able to recognize
the doubleword load-splat idiom that can be implemented using lxvdsx.
However, that does not cover a doubleword splat where the source is a
register. We can implement this using xxspltd (a special form of
xxpermdi). This patch teaches the swap optimization pass about this
idiom.
As a prerequisite, it also permits swap optimization to succeed for
all forms of SUBREG_TO_REG. Previously we were conservative and only
allowed SUBREG_TO_REG when it copied a full register. However, on
reflection any form of SUBREG_TO_REG is safe in and of itself, so long
as an unsafe operation is not performed on its result. In particular,
a widening SUBREG_TO_REG often occurs as an input to a doubleword
splat idiom, particularly in auto-vectorized code.
The doubleword splat idiom is an XXPERMDI operation where both source
registers are identical, and the selection mask is either 0 (splat the
first element) or 3 (splat the second element). To determine whether
the registers are identical, we use the existing mechanism for looking
through "copy-like" operations. That mechanism has a side effect of
marking the XXPERMDI operation as using a physical register, which
would invalidate its presence in a swap-optimized region. This is
correct for the form of XXPERMDI that performs a swap and hence would
be removed, but is not what we want for a doubleword-splat variety of
XXPERMDI. Therefore we reset the physical-register flag on the
XXPERMDI when it represents a splat.
A simple test case is added to verify that we generate the splat and
that we also remove the xxswapd instructions that would otherwise be
associated with the load and store of another operand.
llvm-svn: 241285
This checks subtarget feature compatibility for inlining by verifying
that the callee is a strict subset of the caller's features. This includes
the cpu as part of the subtarget we can get via the incoming functions as
the backend takes CPUs as feature sets.
This allows us to inline things like:
int foo() { return baz(); }
int __attribute__((target("sse4.2"))) bar() {
return foo();
}
so that generic code can be inlined into specialized functions.
llvm-svn: 241221
Summary:
* Add 64-bit address space feature.
* Rename SIMD feature to SIMD128.
* Handle single-thread model with an IR pass (same way ARM does).
* Rename generic processor to MVP, to follow design's lead.
* Add bleeding-edge processors, with all features included.
* Fix a few DEBUG_TYPE to match other backends.
Test Plan: ninja check
Reviewers: sunfish
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D10880
llvm-svn: 241211
Summary:
According to PTX ISA:
For convenience, ld, st, and cvt instructions permit source and destination data operands to be wider than the instruction-type size, so that narrow values may be loaded, stored, and converted using regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit registers when being loaded, stored, or converted to other types and sizes. The operand type checking rules are relaxed for bit-size and integer (signed and unsigned) instruction types; floating-point instruction types still require that the operand type-size matches exactly, unless the operand is of bit-size type.
So, the ISA does not support load with extending/store with truncatation for floating numbers. This is reflected in setting the loadext/truncstore actions to expand in the code for floating numbers, but vectors of floating numbers are not taken care of.
As a result, loading a vector of floats followed by a fp_extend may be combined by DAGCombiner to a extload, and the extload may be lowered to NVPTXISD::LoadV2 with extending information. However, NVPTXISD::LoadV2 does not perform extending, and no extending instructions are inserted. Finally, PTX instructions with mismatched types are generated, like
ld.v2.f32 {%fd3, %fd4}, [%rd2]
This patch adds the correct actions for vectors of floats, so DAGCombiner would not create loads with extending, and correct code is generated.
Patched by Gang Hu.
Test Plan: Test case attached.
Reviewers: jingyue
Reviewed By: jingyue
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D10876
llvm-svn: 241191
Summary:
Offset of frame index is calculated by NVPTXPrologEpilogPass. Before
that the correct offset of stack objects cannot be obtained, which
leads to wrong offset if there are more than 2 frame objects. This patch
move NVPTXPeephole after NVPTXPrologEpilogPass. Because the frame index
is already replaced by %VRFrame in NVPTXPrologEpilogPass, we check
VRFrame register instead, and try to remove the VRFrame if there
is no usage after NVPTXPeephole pass.
Patched by Xuetian Weng.
Test Plan:
Strengthened test/CodeGen/NVPTX/local-stack-frame.ll to check the
offset calculation based on SP and SPL.
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10853
llvm-svn: 241185
When adding little-endian vector support for PowerPC last year, I
inadvertently disabled an optimization that recognizes a load-splat
idiom and generates the lxvdsx instruction. This patch moves the
offending logic so lxvdsx is once again generated.
This pattern is frequently generated by the vectorizer for scalar
loads of an effective constant. Previously the lxvdsx instruction was
wrongly listed as lane-sensitive for the VSX swap optimization (since
both doublewords are identical, swaps are safe). This patch fixes
this as well, so that vectorized code using lxvdsx can now have swaps
removed from the computation.
There is an existing test (@test50) in test/CodeGen/PowerPC/vsx.ll
that checks for the missing optimization. However, vsx.ll was only
being tested for POWER7 with big-endian code generation. I've added
a little-endian RUN statement and expected LE code generation for all
the tests in vsx.ll to give us a bit better VSX coverage, including
what's needed for this patch.
llvm-svn: 241183
The EH code might have been deleted as unreachable and the personality
pruned while the filter is still present. Currently I'm hitting this at
-O0 due to the clang bug PR24009.
llvm-svn: 241170
This patch teaches the AsmParser to accept add/adds/sub/subs/cmp/cmn
with a negative immediate operand and convert them as shown:
add Rd, Rn, -imm -> sub Rd, Rn, imm
sub Rd, Rn, -imm -> add Rd, Rn, imm
adds Rd, Rn, -imm -> subs Rd, Rn, imm
subs Rd, Rn, -imm -> adds Rd, Rn, imm
cmp Rn, -imm -> cmn Rn, imm
cmn Rn, -imm -> cmp Rn, imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers (gas). They are documented in the "ARMv8 Instruction Set
Overview", in the "Arithmetic (immediate)" section. This makes llvm-mc
a programmer-friendly assembler !
This also fixes PR20978: "Assembly handling of adding negative numbers
not as smart as gas".
llvm-svn: 241166
Move some instructions into order of sections in the spec, as the rest
already were.
Differential Revision: http://reviews.llvm.org/D9102
llvm-svn: 241163
Only consider an instruction a candidate for relaxation if the last operand of the
instruction is an expression. We previously checked whether any operand is an expression,
which is useless, since for all instructions concerned, the only operand that may be
affected by relaxation is the last one.
In addition, this removes the check for having RIP as an argument, since it was
plain wrong - even when one of the arguments is RIP, relaxation may still be needed.
This fixes PR9807.
Patch by: david.l.kreitzer@intel.com
Differential Revision: http://reviews.llvm.org/D10766
llvm-svn: 241152
The incoming EBP value established by the runtime is actually a pointer
to the end of the EH registration object, and not the true parent
function frame pointer. Clang doesn't need llvm.x86.seh.exceptioninfo
anymore because we know that the exception info pointer is at a fixed
offset from this incoming EBP.
The llvm.x86.seh.recoverfp intrinsic takes an EBP value provided by the
EH runtime and returns a pointer that is usable with llvm.framerecover.
The llvm.x86.seh.restoreframe intrinsic is inserted by the 32-bit
specific preparation pass in blocks targetted by the EH runtime. It
re-establishes any physical registers used by the parent function to
address the stack, such as the frame, base, and stack pointers.
Neither of these intrinsics correctly handle stack realignment prologues
yet, but it's possible to add that later.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D10848
llvm-svn: 241125
Summary:
Really check if %SP is not used in other places, instead of checking only exact
one non-dbg use.
Patched by Xuetian Weng.
Test Plan:
@foo4 in test/CodeGen/NVPTX/local-stack-frame.ll, create a case that
SP will appear twice.
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: llvm-commits, sfantao, jholewinski
Differential Revision: http://reviews.llvm.org/D10844
llvm-svn: 241099
Duplicating an FP register "as itself" is a bad idea, since it violates the
invariant that every FP register is mapped to at most one FPU stack slot.
Use the scratch FP register instead.
This fixes PR23957.
llvm-svn: 241069
These directives are used to set the default value of the SoftFloat feature.
They have the same effect as setting -m{soft, hard}-float from the command line.
Differential Revision: http://reviews.llvm.org/D9073
llvm-svn: 241066
represented by uint64_t, this patch replaces these
usages with the FeatureBitset (std::bitset) type.
Differential Revision: http://reviews.llvm.org/D10542
llvm-svn: 241058
Realistically, this will be returning ErrorOr for some time as refactoring the
user code to check once per section will take some time.
Given that, use it for checking if a relocation has addend or not.
While at it, add ELFRelocationRef to simplify the users.
llvm-svn: 241028
This change unifies how LTOModule and the backend obtain linker flags
for globals: via a new TargetLoweringObjectFile member function named
emitLinkerFlagsForGlobal. A new function LTOModule::getLinkerOpts() returns
the list of linker flags as a single concatenated string.
This change affects the C libLTO API: the function lto_module_get_*deplibs now
exposes an empty list, and lto_module_get_*linkeropts exposes a single element
which combines the contents of all observed flags. libLTO should never have
tried to parse the linker flags; it is the linker's job to do so. Because
linkers will need to be able to parse flags in regular object files, it
makes little sense for libLTO to have a redundant mechanism for doing so.
The new API is compatible with the old one. It is valid for a user to specify
multiple linker flags in a single pragma directive like this:
#pragma comment(linker, "/defaultlib:foo /defaultlib:bar")
The previous implementation would not have exposed
either flag via lto_module_get_*deplibs (as the test in
TargetLoweringObjectFileCOFF::getDepLibFromLinkerOpt was case sensitive)
and would have exposed "/defaultlib:foo /defaultlib:bar" as a single flag via
lto_module_get_*linkeropts. This may have been a bug in the implementation,
but it does give us a chance to fix the interface.
Differential Revision: http://reviews.llvm.org/D10548
llvm-svn: 241010
When the store sequence being combined actually stores the base register, we
should not mark it as killed until the end.
rdar://21504262
llvm-svn: 241003
This is a new version of http://reviews.llvm.org/D10260.
It turned out that when you specify an integer register in inline asm on
x86 you get the register of the required type size back. That means that
X86TargetLowering::getRegForInlineAsmConstraint() has to accept any of
the integer registers and adapt its size to the given target size which
may be any 8/16/32/64 bit sized type. Surprisingly that means given a
constraint of "{ax}" and a type of MVT::F32 we need to return X86::EAX.
This change makes this face explicit, the previous code seemed like
working by accident because there it never returned an error once a
register was found. On the other hand this rewrite allows to actually
return errors for invalid situations like requesting an integer register
for an i128 type.
Related to rdar://21042280
Differential Revision: http://reviews.llvm.org/D10813
llvm-svn: 241002
Some of the the permissible ARM -mfpu options, which are supported in GCC,
are currently not present in llvm/clang.This patch adds the options:
'neon-fp16', 'vfpv3-fp16', 'vfpv3-d16-fp16', 'vfpv3xd' and 'vfpv3xd-fp16.
These are related to half-precision floating-point and single precision.
Reviewers: rengolin, ranjeet.singh
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10645
llvm-svn: 240930
Summary:
Previously it (incorrectly) used GPR's.
Patch by Simon Dardis. A couple small corrections by myself.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10567
llvm-svn: 240883
Summary:
Some front ends make kernel pointers global already. In that case,
handlePointerParams does nothing.
Test Plan: more tests in lower-kernel-ptr-arg.ll
Reviewers: grosser
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10779
llvm-svn: 240849
Summary: We need to set MTYPE = 2 for VI shaders when targeting the HSA runtime.
Reviewers: arsenm
Differential Revision: http://reviews.llvm.org/D10777
llvm-svn: 240841