Now that we're sure the only root (non-abstract) scope is the current
function scope, there's no need for isCurrentFunctionScope, the property
can be tested directly instead.
llvm-svn: 220451
This introduces access to the AbstractSPDies map from DwarfDebug so
DwarfCompileUnit can access it. Eventually this'll sink down to
DwarfFile, but it'll still be generically accessible - not much
encapsulation to provide it. (constructInlinedScopeDIE could stay
further up, in DwarfFile to avoid exposing this - but I don't think
that's particularly better)
llvm-svn: 219411
(& add a few accessors/make a couple of things public for this - it's a
bit of a toss-up, but I think I prefer it this way, keeping some more of
the meaty code down in DwarfCompileUnit - if only to make for smaller
implementation files, etc)
I think we could simplify range handling a bit if we removed the range
lists from each unit and just put a single range list on DwarfDebug,
similar to address pooling.
llvm-svn: 219370
One of many steps to generalize subprogram emission to both the DWO and
non-DWO sections (to emit -gmlt-like data under fission). Once the
functions are pushed down into DwarfCompileUnit some of the data
structures will be pushed at least into DwarfFile so that they can be
unique per-file, allowing emission to both files independently.
llvm-svn: 219345
It was just calling a bunch of DwarfUnit functions anyway, as can be
seen by the simplification of removing "TheCU" from all the function
calls in the implementation.
llvm-svn: 219103
This requires exposing some of the current function state from
DwarfDebug. I hope there's not too much of that to expose as I go
through all the functions, but it still seems nicer to expose singular
data down to multiple consumers, than have consumers expose raw mapping
data structures up to DwarfDebug for building subprograms.
Part of a series of refactoring to allow subprograms in both the
skeleton and dwo CUs under Fission.
llvm-svn: 219060
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
No functional change. Pre-emptive refactoring before I start pushing
some of this subprogram creation down into DWARFCompileUnit so I can
build different subprograms in the skeleton unit from the dwo unit for
adding -gmlt-like data to the skeleton.
llvm-svn: 218713
r218129 omits DW_TAG_subprograms which have no inlined subroutines when
emitting -gmlt data. This makes -gmlt very low cost for -O0 builds.
Darwin's dsymutil reasonably considers a CU empty if it has no
subprograms (which occurs with the above optimization in -O0 programs
without any force_inline function calls) and drops the line table, CU,
and everything in this situation, making backtraces impossible.
Until dsymutil is modified to account for this, disable this
optimization on Darwin to preserve the desired functionality.
(see r218545, which should be reverted after this patch, for other
discussion/details)
Footnote:
In the long term, it doesn't look like this scheme (of simplified debug
info to describe inlining to enable backtracing) is tenable, it is far
too size inefficient for optimized code (the DW_TAG_inlined_subprograms,
even once compressed, are nearly twice as large as the line table
itself (also compressed)) and we'll be considering things like Cary's
two level line table proposal to encode all this information directly in
the line table.
llvm-svn: 218702
And since it /looked/ like the DwarfStrSectionSym was unused, I tried
removing it - but then it turned out that DwarfStringPool was
reconstructing the same label (and expecting it to have already been
emitted) and uses that.
So I kept it around, but wanted to pass it in to users - since it seemed
a bit silly for DwarfStringPool to have it passed in and returned but
itself have no use for it. The only two users don't handle strings in
both .dwo and .o files so they only ever need the one symbol - no need
to keep it (and have an unused symbol) in the DwarfStringPool used for
fission/.dwo.
Refactor a bunch of accelerator table usage to remove duplication so I
didn't have to touch 4-5 callers.
llvm-svn: 217628
So that the two operations in DwarfDebug couldn't get separated (because
I accidentally separated them in some work in progress), put them
together. While we're here, move DwarfUnit::addRange to
DwarfCompileUnit, since it's not relevant to type units.
llvm-svn: 217468
PrevSection/PrevCU are used to detect holes in the address range of a CU
to ensure the DW_AT_ranges does not include those holes. When we see a
function with no debug info, though it may be in the same range as the
prior and subsequent functions, there should be a gap in the CU's
ranges. By setting PrevCU to null in that case, the range would not be
extended to cover the gap.
llvm-svn: 217466
DW_TAG_lexical_scopes inform debuggers about the instruction range for
which a given variable (or imported declaration/module/etc) is valid. If
the scope doesn't itself contain any such entities, it's a waste of
space and should be omitted.
We were correctly doing this for entirely empty leaves, but not for
intermediate nodes.
Reduces total (not just debug sections) .o file size for a bootstrap
-gmlt LLVM by 22% and bootstrap -gmlt clang executable by 13%. The wins
for a full -g build will be less as a % (and in absolute terms), but
should still be substantial - with some of that win being fewer
relocations, thus more substantiall reducing link times than fewer bytes
alone would have.
llvm-svn: 216861
First of many steps to improve lexical scope construction (to omit
trivial lexical scopes - those without any direct variables). To that
end it's easier not to create imported entities directly into the
lexical scope node, but to build them, then add them if necessary.
llvm-svn: 216838
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This simplifies construction and usage while making the data structure
smaller. It was a holdover from the days when we didn't have a separate
DebugLocList and all we had was a flat list of DebugLocEntries.
llvm-svn: 214933
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
This recommits r208930, r208933, and r208975 (by reverting r209338) and
reverts r209529 (the FIXME to readd this functionality once the tools
were fixed) now that DWP has been fixed to cope with a single section
for all fission type units.
Original commit message:
"Since type units in the dwo file are handled by a debug aware tool,
they don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization."
llvm-svn: 213956
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
This was then reverted again in r213581 as it caused PR20367. The root
cause of this was the early exit in LiveDebugVariables meant that
spurious DBG_VALUE intrinsics that referenced dead variables were not
removed, causing an assertion/crash later on. The fix is to have
LiveDebugVariables strip all DBG_VALUE intrinsics in functions without
debug info as they're not needed anyway. Test case added to cover this
situation (that occurs when a debug-having function is inlined into a
nodebug function) in test/DebugInfo/X86/nodebug_with_debug_loc.ll
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 213952
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212649
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212203
Now that we handle finding abstract variables at the end of the module,
remove the upfront handling and just ensure the abstract variable is
built when necessary.
In theory we could have a split implementation, where inlined variables
are immediately constructed referencing the abstract definition, and
concrete variables are delayed - but let's go with one solution for now
unless there's a reason not to.
llvm-svn: 210961
Rather than relying on abstract variables looked up at the time the
concrete variable is created, look them up at the end of the module to
ensure they're referenced even if they're created after the concrete
definition. This completes/matches the work done in r209677 to handle
this for the subprograms themselves.
llvm-svn: 210946
This doesn't fix the abstract variable handling yet, but it introduces a
similar delay mechanism as was added for subprograms, causing
DW_AT_location to be reordered to the beginning of the attribute list
for local variables, and fixes all the test fallout for that.
A subsequent commit will remove the abstract variable handling in
DbgVariable and just do the abstract variable lookup at module end to
ensure that abstract variables introduced after their concrete
counterparts are appropriately referenced by the concrete variable.
llvm-svn: 210943
Abstract variables within abstract scopes that are entirely optimized
away in their first inlining are omitted because their scope is not
present so the variable is never created. Instead, we should ensure the
scope is created so the variable can be added, even if it's been
optimized away in its first inlining.
This fixes the incorrect debug info in missing-abstract-variable.ll
(added in r210143) and passes an asserts self-hosting build, so
hopefully there's not more of these issues left behind... *fingers
crossed*.
llvm-svn: 210221
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
llvm-svn: 209677
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
llvm-svn: 209674
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
llvm-svn: 209338
Since type units in the dwo file are handled by a debug aware tool, they
don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization.
llvm-svn: 208930
This is just unneccessary - we only create abstract definitions when
we're inlining anyway, so there's no reason to delay this to see if
we're going to inline anything.
llvm-svn: 208798
Summary:
Get rid of UserVariables set, and turn DbgValues into MapVector
to get a fixed ordering, as suggested in review for http://reviews.llvm.org/D3573.
Test Plan: llvm regression tests
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3579
llvm-svn: 207720
Breaks GDB buildbot
(http://lab.llvm.org:8011/builders/clang-x86_64-ubuntu-gdb-75/builds/14517)
GCC emits DW_AT_object_pointer /everywhere/ (declaration, abstract
definition, inlined subroutine), but it looks like GCC relies on it
being somewhere other than the declaration, at least. I'll experiment
further & can hopefully still remove it from the inlined_subroutine.
This reverts commit r207705.
llvm-svn: 207719
This effectively reverts r164326, but adds some comments and
justification and ensures we /don't/ emit the DW_AT_object_pointer on
the (abstract and concrete) definitions. (while still preserving it on
standalone definitions involving ObjC Blocks)
This does increase the size of member function declarations from 7 to 11
bytes, unfortunately, but still seems like the Right Thing to do so that
callers that see only the declaration still have the information about
the object pointer. That said, I don't know what, if any, DWARF
consumers don't have a heuristic to guess this in the case of normal
C++ member functions - perhaps we can remove it entirely.
llvm-svn: 207705
DwarfDebug.h has a SmallVector member containing a unique_ptr of an
incomplete type. MSVC doesn't have key functions, so the vtable and
dtor are emitted in AsmPrinter.cpp, where DwarfDebug's ctor is called.
AsmPrinter.cpp include DwarfUnit.h and doesn't get a complete definition
of DwarfTypeUnit. We could fix the problem by including DwarfUnit.h in
DwarfDebug.h, but that would increase header bloat. Instead, define
~DwarfDebug out of line.
llvm-svn: 207701
These were called from distinct places and had significant distinct
behavior. No need to make that a dynamic check inside the function
rather than just having two functions (refactoring some common code into
a helper function to be called from the two separate functions).
llvm-svn: 207539
Now that the subtle constructScopeDIE has been refactored into two
functions - one returning memory to take ownership of, one returning a
pointer to already owning memory - push unique_ptr through more APIs.
I think this completes most of the unique_ptr ownership of DIEs.
llvm-svn: 207442
While refactoring out constructScopeDIE into two functions I realized we
were emitting DW_AT_object_pointer in the inlined subroutine when we
didn't need to (GCC doesn't, and the abstract subprogram definition has
the information already).
So here's the refactoring and the bug fix. This is one step of
refactoring to remove some subtle memory ownership semantics. It turns
out the original constructScopeDIE returned ownership in its return
value in some cases and not in others. The split into two functions now
separates those two semantics - further cleanup (unique_ptr, etc) will
follow.
llvm-svn: 207441
Since there's no way to ensure the type unit in the .dwo and the type
unit skeleton in the .o are correlated, this cannot work.
This implementation is a bit inefficient for a few reasons, called out
in comments.
llvm-svn: 207323
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
llvm-svn: 207263
Since this doesn't return ownership (the DIE has been added to the
specified parent already) nor return null, just return by reference.
llvm-svn: 207259
This'll make changing to unique_ptr ownership of DIEs easier since the
usages will now have '*' on them making them textually compatible
between unique_ptr and raw pointer.
llvm-svn: 207253
There's only ever one address pool, not one per DWARF output file, so
let's just have one.
(similar refactoring of the string pool to come soon)
llvm-svn: 207026
Some of these types (DwarfDebug in particular) are quite large to begin
with (and I keep forgetting whether DwarfFile is in DwarfDebug or
DwarfUnit... ) so having a few smaller files seems like goodness.
llvm-svn: 207010
This prompted me to push references through most of DwarfDebug. Sorry
for the churn.
Honestly it's a bit silly that we're passing around units all over the
place like that anyway and I think it's mostly due to the DIE attribute
adding utility functions being utilities in DwarfUnit. I should have
another go at moving them out of DwarfUnit...
llvm-svn: 206925
This reverts commit r206780.
This commit was regressing gdb.opt/inline-locals.exp in the GDB 7.5 test
suite. Reverting until I can fix the issue.
llvm-svn: 206867
Requires switching some vectors to lists to maintain pointer validity.
These could be changed to forward_lists (singly linked) with a bit more
work - I've left comments to that effect.
llvm-svn: 206780
Got bored, removed some manual memory management.
Pushed references (rather than pointers) through a few APIs rather than
replacing *x with x.get().
llvm-svn: 206222
Nice to be able to just print out the Tag and have the debugger print
dwarf::DW_TAG_subprogram or whatever, rather than an int.
It's a bit finicky (for example DIDescriptor::getTag still returns
unsigned) because some places still handle real dwarf tags + our fake
tags (one day we'll remove the fake tags, hopefully).
llvm-svn: 206098
This removes the magic-number-esque code creating/retrieving the same
label for a debug_loc entry from two places and removes the last small
piece of reusable logic from emitDebugLoc so that there will be less
duplication when refactoring it into two functions (one for debug_loc,
the other for debug_loc.dwo).
llvm-svn: 205382
Implement debug_loc.dwo, as well as llvm-dwarfdump support for dumping
this section.
Outlined in the DWARF5 spec and http://gcc.gnu.org/wiki/DebugFission the
debug_loc.dwo section has more variation than the standard debug_loc,
allowing 3 different forms of entry (plus the end of list entry). GCC
seems to, and Clang certainly, only use one form, so I've just
implemented dumping support for that for now.
It wasn't immediately obvious that there was a good refactoring to share
the implementation of dumping support between debug_loc and
debug_loc.dwo, so they're separate for now - ideas welcome or I may come
back to it at some point.
As per a comment in the code, we could choose different forms that may
reduce the number of debug_addr entries we emit, but that will require
further study.
llvm-svn: 204697
No functional change intended.
Merging up-front rather than delaying this task until later. This just
seems simpler and more efficient (avoiding growing the debug loc list
only to have to skip over those post-merged entries, etc).
llvm-svn: 204679
Use the range machinery for DW_AT_ranges and DW_AT_high/lo_pc.
This commit moves us from a single range per subprogram to extending
ranges if we are:
a) In the same section, and
b) In the same enclosing CU.
This means we have more fine grained ranges for compile units, and fewer
ranges overall when we have multiple functions in the same CU
adjacent to each other in the object file.
Also remove all of the earlier hacks around this functionality for
function sections etc. Also update all of the testcases to take into
account the merging functionality.
with a fix for location entries in the debug_loc section:
Make sure that debug loc entries are relative to the low_pc
of the compile unit. This means that when we only have a single
range that the offset should be just relative to the low_pc
of the unit, for multiple ranges for a CU this means that we'll be
relative to 0 which we emit along with DW_AT_ranges.
This mostly shows up with linked binaries, so add a testcase with
multiple CUs so that our location is going to be offset of a CU
with a non-zero low_pc.
llvm-svn: 204377
This commit moves us from a single range per subprogram to extending
ranges if we are:
a) In the same section, and
b) In the same enclosing CU.
This means we have more fine grained ranges for compile units, and fewer
ranges overall when we have multiple functions in the same CU
adjacent to each other in the object file.
Also remove all of the earlier hacks around this functionality for
function sections etc. Also update all of the testcases to take into
account the merging functionality.
llvm-svn: 204277
This isn't a complete fix - it falls back to non-comp_dir when multiple
compile units are in play. Adding a map of comp_dir to table is part of
the more general solution, but I gave up (in the short term) when I
realized I'd also have to calculate the size of each type unit so as to
produce correct DW_AT_stmt_list attributes.
llvm-svn: 204202
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
This removes an attribute (and more importantly, a relocation) from
skeleton type units and removes some unnecessary file names from the
debug_line section that remains in the .o (and linked executable) file.
There's still a few places we could shave off some more space here:
* use compilation dir of the underlying compilation unit (since all the
type units share that compilation dir - though this would be more
complicated in LTO cases where they don't (keep a map of compilation
dir->line table header?))
* Remove some of the unnecessary header fields from the line table since
they're not needed in this situation (about 12 bytes per table).
llvm-svn: 204099
When emitting assembly there's no support for emitting separate line
tables for each compilation unit - so LLVM emits .loc directives
producing a single line table.
Line tables have an implicit directory (index 0) equal to the
compilation directory (DW_AT_comp_dir) of the compilation unit that
references them.
If multiple compilation units (with possibly disparate compilation
directories) reference the same line table, we must avoid relying on
this ambiguous directory.
Achieve this my simply not setting the compilation directory on the line
table when we're in this situation (multiple units while emitting
assembly).
llvm-svn: 204094
We still do a few lookups into the line table mapping in MCContext that
could be factored out into a single lookup (rather than looking it up
once for the table label, once to set the compilation unit, once for
each time we need a file ID, etc... ) but assembly output complicates
that somewhat as we still need a virtual dispatch back to the
MCAsmStreamer in that case.
llvm-svn: 204092
See r204027 for the precursor to this that applied to asm debug info.
This required some non-obvious API changes to handle the case of asm
output (we never go asm->asm so this didn't come up in r204027): the
modification of the file/directory name by MCDwarfLineTableHeader needed
to be reflected in the MCAsmStreamer caller so it could print the
appropriate .file directive, so those StringRef parameters are now
non-const ref (in/out) parameters rather than just const.
llvm-svn: 204069
based on the ODR.
This adds an OdrMemberMap to DwarfDebug which is used to unique C++
member function declarations based on the unique identifier of their
containing class and their mangled name.
We can't use the usual DIRef mechanism here because DIScopes are indexed
using their entire MDNode, including decl_file and decl_line, which need
not be unique (see testcase).
Prior to this change multiple redundant member function declarations would
end up in the same uniqued DW_TAG_class_type.
llvm-svn: 203982
I could fold the callers into their one call site, but the indirection
(given how verbose choosing the section is) seemed helpful.
The use of a member function pointer's a bit "tricky", but seems limited
enough, the call sites are simple/clean/clear, and there's only one use.
llvm-svn: 203619
First: refactor out the emission of entries into the .debug_loc section
into its own routine.
Second: add a new class ByteStreamer that can be used to either emit
using an AsmPrinter or hash using DIEHash the series of bytes that
would be emitted. Use this in all of the location emission routines
for the .debug_loc section.
No functional change intended outside of a few additional comments
in verbose assembly.
llvm-svn: 203304
This works by moving the existing code into the DIEValue hierarchy
and using the DwarfDebug pointer off of the AsmPrinter to access
any global information we need.
llvm-svn: 203033
This enables us to figure out where in the debug_loc section our
locations are so that we can eventually hash them. It also helps
remove some special case code in emission. No functional change.
llvm-svn: 203018
already lived there and it is where it belongs -- this is the in-memory
debug location representation.
This is just cleanup -- Modules can actually cope with this, but that
doesn't make it right. After chatting with folks that have out-of-tree
stuff, going ahead and moving the rest of the headers seems preferable.
llvm-svn: 202960
alongside DIEBlock and replace uses accordingly. Use DW_FORM_exprloc
in DWARF4 and later code. Update testcases.
Adding a DIELoc instead of using extra forms inside DIEBlock so
that we can keep location expressions separate from other uses. No
direct use at the moment, however, it's not a lot of code and
using a separately named class keeps it somewhat more obvious
what's going on in various locations.
llvm-svn: 201481
This broke in r185459 while TLS support was being generalized to handle
non-symbol TLS representations.
I thought about/tried having an enum rather than a bool to track the
TLS-ness of the address table entry, but namespaces and naming seemed
more hassle than it was worth for only one caller that needed to specify
this.
llvm-svn: 201469
code to see if we're emitting a function into a non-default
text section. This is still a less-than-ideal solution, but more
contained than r199871 to determine whether or not we're emitting
code into an array of comdat sections.
llvm-svn: 200269
compile unit. Make these relocations on the platforms that need
relocations and add a routine to ensure that we don't put the
addresses in an offset table for split dwarf.
llvm-svn: 199990
This reverts commit r198865 which reverts r198851.
ASan identified a use-of-uninitialized of the DwarfTypeUnit::Ty variable
in skeleton type units.
llvm-svn: 198908
Since we'll now also need the split dwarf file name along with the
language in DwarfTypeUnits, just use the whole DICompileUnit rather than
explicitly handling each field needed.
llvm-svn: 198842
This reverts commit r198398, thus reapplying r198397.
I had accidentally introduced an endianness issue when applying the hash
to the type unit. Using support::ulittle64_t in the reinterpret_cast in
addDwarfTypeUnitType fixes this issue.
Original commit message:
Debug Info: Type Units: Simplify type hashing using IR-provided unique
names.
What's good for LTO metadata size problems ought to be good for non-LTO
debug info size too, so let's rely on the same uniqueness in both cases.
If it's insufficient for non-LTO for whatever reason (since we now won't
be uniquing CU-local types or any C types - but these are likely to not
be the most significant contributors to type bloat) we should consider a
frontend solution that'll help both LTO and non-LTO alike, rather than
using DWARF-level DIE-hashing that only helps non-LTO debug info size.
It's also much simpler this way and benefits C++ even more since we can
deduplicate lexically separate definitions of the same C++ type since
they have the same mangled name.
llvm-svn: 198436
What's good for LTO metadata size problems ought to be good for non-LTO
debug info size too, so let's rely on the same uniqueness in both cases.
If it's insufficient for non-LTO for whatever reason (since we now won't
be uniquing CU-local types or any C types - but these are likely to not
be the most significant contributors to type bloat) we should consider a
frontend solution that'll help both LTO and non-LTO alike, rather than
using DWARF-level DIE-hashing that only helps non-LTO debug info size.
It's also much simpler this way and benefits C++ even more since we can
deduplicate lexically separate definitions of the same C++ type since
they have the same mangled name.
llvm-svn: 198397
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
with a fix to use integer 0 for DW_AT_low_pc since the relocation to the text section symbol was causing issues with COFF. Accordingly remove addLocalLabelAddress and machinery since we're not currently using it.
llvm-svn: 198222
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
They could be reproducible with explicit target.
llvm/lib/MC/WinCOFFObjectWriter.cpp:224: bool {anonymous}::COFFSymbol::should_keep() const: Assertion `Section->Number != -1 && "Sections with relocations must be real!"' failed.
llvm-svn: 198208
back to the compile unit from the aranges section is to the skeleton
unit and not the one in the dwo.
Do this by adding a method to grab a forwarded on local sym and local
section by querying the skeleton if one exists and using that. Add
a few tests to verify the relocations are back to the correct section.
llvm-svn: 198202
This simplifies type unit and type unit reference creation as well as
setting the stage for inter-type hashing across type unit boundaries.
llvm-svn: 197539
This simplifies reasoning about the code and enables simple navigation
from a skeleton to its full unit. (currently there are no type unit
skeletons, so the skeleton list doesn't have the same ID == index
property)
Eventually we should get rid of this ID and just store the labels we
need as the IDs are allowing this code to create difficult to
manage/understand associations (loops over non-skeletal units are
implicitly referencing their skeletal units during pub* emission, for
example). It may be necessary to have some kind of skeleton->full unit
association and a more direct pointer or similar device would be
preferable than an index.
llvm-svn: 196600
Header/cpp file rename to follow immediately - just splitting out the
commits for ease of review/reading to demonstrate that the renaming
changes are entirely mechanical.
llvm-svn: 196139
This avoids the need for an extra list of SkeletonCUs and associated
cleanup while staging things to be cleaner for further type unit
improvements.
Also hopefully fixes a memory leak introduced in r195166.
llvm-svn: 195536
Emit DW_TAG_type_units into the debug_info section using compile unit
headers. This is bogus/unusable by debuggers, but testable and provides
more isolated review.
Subsequent patches will include support for type unit headers and
emission into the debug_types section, as well as comdat grouping the
types based on their hash. Also the CompileUnit type will be renamed
'Unit' and relevant portions pulled out into respective CompileUnit and
TypeUnit types.
llvm-svn: 195166
We add a map in DwarfDebug to map MDNodes that are shareable across CUs to the
corresponding DIEs: MDTypeNodeToDieMap. These DIEs can be shared across CUs,
that is why we keep the maps in DwarfDebug instead of CompileUnit.
We make the assumption that if a DIE is not added to an owner yet, we assume
it belongs to the current CU. Since DIEs for the type system are added to
their owners immediately after creation, and other DIEs belong to the current
CU, the assumption should be true.
A testing case is added to show that we only create a single DIE for a type
MDNode and we use ref_addr to refer to the type DIE.
We also add a testing case to show ref_addr relocations for non-darwin
platforms.
llvm-svn: 193779
To support ref_addr, we calculate the section offset of a DIE (i.e. offset
of a DIE from beginning of the debug info section). The Offset field in DIE
is currently CU-relative. To calculate the section offset, we add a
DebugInfoOffset field in CompileUnit to store the offset of a CU from beginning
of the debug info section. We set the value in DwarfUnits::computeSizeAndOffset
for each CompileUnit.
A helper function DIE::getCompileUnit is added to return the CU DIE that
the input DIE belongs to. We also add a map CUDieMap in DwarfDebug to help
finding the CU for a given CU DIE.
For a cross-referenced DIE, we first find the CU DIE it belongs to with
getCompileUnit, then we use CUDieMap to get the corresponding CU for the CU DIE.
Adding the section offset of the CU with the CU-relative offset of a DIE gives
us the seciton offset of the DIE.
We correctly emit ref_addr with relocation using EmitLabelPlusOffset when
doesDwarfUseRelocationsAcrossSections is true.
This commit handles the emission of DW_FORM_ref_addr when we have an attribute
with FORM_ref_addr. A follow-on patch will start using ref_addr when adding a
DIEEntry. This commit will be tested and verified in the follow-on patch.
Reviewed off-list by Eric, Thanks.
llvm-svn: 193658
is updated to use DITypeRef.
Move isUnsignedDIType and getOriginalTypeSize from DebugInfo.h to be static
helper functions in DwarfCompileUnit. We already have a static helper function
"isTypeSigned" in DwarfCompileUnit, and a pointer to DwarfDebug is added to
resolve the derived-from field. All three functions need to go across link
for derived-from fields, so we need to get hold of a type identifier map.
A pointer to DwarfDebug is also added to DbgVariable in order to resolve the
derived-from field.
Debug info verifier is updated to check a derived-from field is a TypeRef.
Verifier will not go across link for derived-from fields, in debug info finder,
we go across the link to add derived-from fields to types.
Function getDICompositeType is only used by dragonegg and since dragonegg does
not generate identifier for types, we use an empty map to resolve the
derived-from field.
When printing a derived-from field, we use DITypeRef::getName to either return
the type identifier or getName of the DIType.
A paired commit at clang is required due to changes to DIBuilder.
llvm-svn: 192018
r191052 added emitting .debug_aranges to Clang, but this
functionality is broken: it uses all MC labels added in DWARF Asm
printer, including the labels for build relocations between
different DWARF sections, like .Lsection_line or .Ldebug_loc0.
As a result, if any DIE .debug_info would contain "DW_AT_location=0x123"
attribute, .debug_aranges would also contain a range starting from 0x123,
breaking tools that rely on this section.
This patch fixes this by using only MC labels that corresponds to the
addresses in the user program.
llvm-svn: 191884
is updated to use DITypeRef.
Move isUnsignedDIType and getOriginalTypeSize from DebugInfo.h to be static
helper functions in DwarfCompileUnit. We already have a static helper function
"isTypeSigned" in DwarfCompileUnit, and a pointer to DwarfDebug is added to
resolve the derived-from field. All three functions need to go across link
for derived-from fields, so we need to get hold of a type identifier map.
A pointer to DwarfDebug is also added to DbgVariable in order to resolve the
derived-from field.
Debug info verifier is updated to check a derived-from field is a TypeRef.
Verifier will not go across link for derived-from fields, in debug info finder,
we go across the link to add derived-from fields to types.
Function getDICompositeType is only used by dragonegg and since dragonegg does
not generate identifier for types, we use an empty map to resolve the
derived-from field.
When printing a derived-from field, we use DITypeRef::getName to either return
the type identifier or getName of the DIType.
A paired commit at clang is required due to changes to DIBuilder.
llvm-svn: 191800
and it is shared across CUs.
We add a few maps in DwarfDebug to map MDNodes for the type system to the
corresponding DIEs: MDTypeNodeToDieMap, MDSPNodeToDieMap, and
MDStaticMemberNodeToDieMap. These DIEs can be shared across CUs, that is why we
keep the maps in DwarfDebug instead of CompileUnit.
Sometimes, when we try to add an attribute to a DIE, the DIE is not yet added
to its owner yet, so we don't know whether we should use ref_addr or ref4.
We create a worklist that will be processed during finalization to add
attributes with the correct form (ref_addr or ref4).
We add addDIEEntry to DwarfDebug to be a wrapper around DIE->addValue. It checks
whether we know the correct form, if not, we update the worklist
(DIEEntryWorklist).
A testing case is added to show that we only create a single DIE for a type
MDNode and we use ref_addr to refer to the type DIE.
llvm-svn: 191792
The size of common symbols is now tracked correctly, so they can be listed in the arange section without needing knowledge of other following symbols.
.comm (and .lcomm) do not indicate to the system assembler any particular section to use, so we have to treat them as having no section.
Test case update to account for this.
llvm-svn: 191210
versions of gold. This support is designed to allow gold to produce
gdb_index sections similar to the accelerator tables and consumable
by gdb.
llvm-svn: 190649
We try to create the scope children DIEs after we create the scope DIE. But
to avoid emitting empty lexical block DIE, we first check whether a scope
DIE is going to be null, then create the scope children if it is not null.
From the number of children, we decide whether to actually create the scope DIE.
This patch also removes an early exit which checks for a special condition.
It also removes deletion of un-used children DIEs that are generated
because we used to generate children DIEs before the scope DIE.
Deletion of un-used children DIEs may cause problem because we sometimes keep
created DIEs in a member variable of a CU.
llvm-svn: 190421
Specialize the constructors for DIRef<DIScope> and DIRef<DIType> to make sure
the Value is indeed a scope ref and a type ref.
Use DIScopeRef for DIScope::getContext and DIType::getContext and use DITypeRef
for getContainingType and getClassType.
DIScope::generateRef now returns a DIScopeRef instead of a "Value *" for
readability and type safety.
llvm-svn: 190418
This partially reverts r190330. DIScope::getContext now returns DIScopeRef
instead of DIScope. We construct a DIScopeRef from DIScope when we are
dealing with subprogram, lexical block or name space.
llvm-svn: 190362
DIScope::getContext is a wrapper function that calls the specific getContext
method on each subclass. When we switch DIType::getContext to return DIScopeRef
instead of DIScope, DIScope::getContext can no longer return a DIScope without
a type identifier map.
DIScope::getContext is only used by DwarfDebug, so we move it to DwarfDebug
to have easy access to the type identifier map.
llvm-svn: 190330
This helper function needs the type identifier map when we switch
DIType::getContext to return DIScopeRef instead of DIScope.
Since isSubprogramContext is used by DwarfDebug only, We move it to DwarfDebug
to have easy access to the map.
llvm-svn: 190325
A reference to a scope is more general than a reference to a type since
DIType is a subclass of DIScope.
A reference to a type can be either an identifier for the type or
the DIType itself, while a reference to a scope can be either an
identifier for the type (when the scope is indeed a type) or the
DIScope itself. A reference to a type and a reference to a scope
will be resolved in the same way. The only difference is in the
verifier when a field is a reference to a type (i.e. the containing
type field of a DICompositeType) or a field is a reference to a scope
(i.e. the context field of a DIType).
This is to get ready for switching DIType::getContext to return
DIScopeRef instead of DIScope.
Tighten up isTypeRef and isScopeRef to make sure the identifier is not
empty and the MDNode is DIType for TypeRef and DIScope for ScopeRef.
llvm-svn: 190322