When debugging a boost build with a modified
version of Clang, I discovered that the PTH implementation
stores TokenKind in 8 bits. However, we currently have 368
TokenKinds.
The result is that the value gets truncated and the wrong token
gets picked up when including PTH files. It seems that this will
go wrong every time someone uses a token that uses the 9th bit.
Upon asking on IRC, it was brought up that this was a highly
experimental features that was considered a failure. I discovered
via googling that BoostBuild (mostly Boost.Math) is the only user of
this
feature, using the CC1 flag directly. I believe that this can be
transferred over to normal PCH with minimal effort:
https://github.com/boostorg/build/issues/367
Based on advice on IRC and research showing that this is a nearly
completely unused feature, this patch removes it entirely.
Note: I considered leaving the build-flags in place and making them
emit an error/warning, however since I've basically identified and
warned the only user, it seemed better to just remove them.
Differential Revision: https://reviews.llvm.org/D54547
Change-Id: If32744275ef1f585357bd6c1c813d96973c4d8d9
llvm-svn: 348266
Revert the two changes to thread CodeGenOptions into the TargetInfo allocation
and to fix the layering violation by moving CodeGenOptions into Basic.
Code Generation is arguably not particularly "basic". This addresses Richard's
post-commit review comments. This change purely does the mechanical revert and
will be followed up with an alternate approach to thread the desired information
into TargetInfo.
llvm-svn: 265806
This is a mechanical move of CodeGenOptions from libFrontend to libBasic. This
fixes the layering violation introduced earlier by threading CodeGenOptions into
TargetInfo. It should also fix the modules based self-hosting builds. NFC.
llvm-svn: 265702
This patch changes cc1 option for PGO profile use from
-fprofile-instr-use=<path> to -fprofile-instrument-use-path=<path>.
-fprofile-instr-use=<path> is now a driver only option.
In addition to decouple the cc1 option from the driver level option, this patch
also enables IR level profile use. cc1 option handling now reads the profile
header and sets CodeGenOpt ProfileUse (valid values are {None, Clang, LLVM}
-- this is a common enum for -fprofile-instrument={}, for the profile
instrumentation), and invoke the pipeline to enable the respective PGO use pass.
Reviewers: silvas, davidxl
Differential Revision: http://reviews.llvm.org/D17737
llvm-svn: 262515
Introduce the notion of a module file extension, which introduces
additional information into a module file at the time it is built that
can then be queried when the module file is read. Module file
extensions are identified by a block name (which must be unique to the
extension) and can write any bitstream records into their own
extension block within the module file. When a module file is loaded,
any extension blocks are matched up with module file extension
readers, that are per-module-file and are given access to the input
bitstream.
Note that module file extensions can only be introduced by
programmatic clients that have access to the CompilerInvocation. There
is only one such extension at the moment, which is used for testing
the module file extension harness. As a future direction, one could
imagine allowing the plugin mechanism to introduce new module file
extensions.
llvm-svn: 251955
A PCHContainerOperations abstract interface provides operations for
creating and unwrapping containers for serialized ASTs (precompiled
headers and clang modules). The default implementation is
RawPCHContainerOperations, which uses a flat file for the output.
The main application for this interface will be an
ObjectFilePCHContainerOperations implementation that uses LLVM to
wrap the module in an ELF/Mach-O/COFF container to store debug info
alongside the AST.
rdar://problem/20091852
llvm-svn: 240225
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 3.
llvm-svn: 230305
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 2.
llvm-svn: 230089
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies.
llvm-svn: 230067
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
llvm-svn: 230044
I'd mispelled "Bitcode/BitCodes.h" before, and tested on a case
insensitive filesystem.
This reverts commit r219649, effectively re-applying r219647 and
r219648.
llvm-svn: 219664
The bots can't seem to find an include file. Reverting for now and
I'll look into it in a bit.
This reverts commits r219647 and r219648.
llvm-svn: 219649
We currently read serialized diagnostics directly in the C API, which
makes it difficult to reuse this logic elsewhere. This extracts the
core of the serialized diagnostic parsing logic into a base class that
can be subclassed using a visitor pattern.
llvm-svn: 219647
The rewrite facility's footprint is small so it's not worth going to these
lengths to support disabling at configure time, particularly since key compiler
features now depend on it.
Meanwhile the Objective-C rewriters have been moved under the
ENABLE_CLANG_ARCMT umbrella for now as they're comparatively heavy and still
potentially worth excluding from lightweight builds.
Tests are now passing with any combination of feature flags. The flags
historically haven't been tested by LLVM's build servers so caveat emptor.
llvm-svn: 213171
This adds the -module-dependency-dir to clang -cc1, which specifies a
directory to copy all of a module's dependencies into in a form
suitable to be used as a VFS using -ivfsoverlay with the generated
vfs.yaml.
This is useful for crashdumps that involve modules, so that the module
dependencies will be intact when a crash report script is used to
reproduce a problem on another machine.
We currently encode the absolute path to the dump directory, due to
limitations in the VFS system. Until we can handle relative paths in
the VFS, users of the VFS map may need to run a simple search and
replace in the file.
llvm-svn: 211303
Fixed by moving ProcessWarningOptions from Frontend into Basic. All of
the dependencies for ProcessWarningOptions were already in Basic, so
this was a small change.
llvm-svn: 207549
This does;
- clang_tablegen() adds each tblgen'd target to global property CLANG_TABLEGEN_TARGETS as list.
- List of targets is added to LLVM_COMMON_DEPENDS.
- all clang libraries and targets depend on generated headers.
You might wonder this would be regression, but in fact, this is little loss.
- Almost all of clang libraries depend on tblgen'd files and clang-tblgen.
- clang-tblgen may cause short stall-out but doesn't cause unconditional rebuild.
- Each library's dependencies to tblgen'd files might vary along headers' structure.
It made hard to track and update *really optimal* dependencies.
Each dependency to intrinsics_gen and ClangSACheckers is left as DEPENDS.
llvm-svn: 201842
very simple semantic analysis that just builds the AST; minor changes for lexer
to pick up source locations I didn't think about before.
Comments AST is modelled along the ideas of HTML AST: block and inline content.
* Block content is a paragraph or a command that has a paragraph as an argument
or verbatim command.
* Inline content is placed within some block. Inline content includes plain
text, inline commands and HTML as tag soup.
llvm-svn: 159790
express library-level dependencies within Clang.
This is no more verbose really, and plays nicer with the rest of the
CMake facilities. It should also have no change in functionality.
llvm-svn: 158888
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
the policy of how diagnostics are lowered/rendered, while TextDiagnostic handles
the actual pretty-printing.
This is a first part of reworking SerializedDiagnosticPrinter to use the same
inclusion-stack/macro-expansion logic as TextDiagnostic.
llvm-svn: 146819
belonged in the Serialization library, it's setting up a compilation,
not just deserializing.
This should fix PR11512, making Serialization actually be layered below
Frontend, a long standing layering violation in Clang.
llvm-svn: 146233
The motivation for this new DiagnosticConsumer is to provide a way for tools invoking the compiler
to get its diagnostics via a libclang interface, rather than textually parsing the compiler output.
This gives us flexibility to change the compiler's textual output, but have a structured data format
for clients to use to get the diagnostics via a stable API.
I have no tests for this, but llvm-bcanalyzer so far shows that the emitted file is well-formed.
More work to follow.
llvm-svn: 143259
making it accessible to anyone from the Frontend library. Still a good
bit of cleanup to do here, but its a good milestone. This ensures that
*all* of the functionality needed to implement the DiagnosticConsumer is
exposed via the generic interface in some form. No sneaky re-use of
static functions.
llvm-svn: 142086