This reverts commit b60896fad9.
Breaks building with gcc:
/usr/include/c++/7/bits/stl_construct.h:75:7: error: use of deleted function ‘clang::clangd::Tweak::Selection::Selection(const clang::clangd::Tweak::Selection&)’
{ ::new(static_cast<void*>(__p)) _T1(std::forward<_Args>(__args)...); }
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/ClangdServer.h:28:0,
from /home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/ClangdServer.cpp:9:
/home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/refactor/Tweak.h:49:10: note: ‘clang::clangd::Tweak::Selection::Selection(const clang::clangd::Tweak::Selection&)’ is implicitly deleted because the default definition would be ill-formed:
struct Selection {
^~~~~~~~~
/home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/refactor/Tweak.h:49:10: error: use of deleted function ‘clang::clangd::SelectionTree::SelectionTree(const clang::clangd::SelectionTree&)’
In file included from /home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/refactor/Tweak.h:25:0,
from /home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/ClangdServer.h:28,
from /home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/ClangdServer.cpp:9:
/home/buildslave/buildslave/clang-cmake-armv7-selfhost-neon/llvm/clang-tools-extra/clangd/Selection.h:96:3: note: declared here
SelectionTree(const SelectionTree &) = delete;
^~~~~~~~~~~~~
e.g. here:
http://lab.llvm.org:8011/builders/clang-cmake-armv7-selfhost-neon/builds/2714http://lab.llvm.org:8011/builders/clang-ppc64be-linux/builds/41866
Similar motivations to the movement of ASTRecordReader:
AbstractBasicWriter.h already has quite a few dependencies,
and it's going to get pretty large as we generate more and more
into it. Meanwhile, most clients don't depend on this detail of
the implementation and shouldn't need to be recompiled.
I've also made OMPClauseWriter private, like it belongs.
AbstractBasicReader.h has quite a few dependencies already,
and that's only likely to increase. Meanwhile, ASTRecordReader
is really an implementation detail of the ASTReader that is only
used in a small number of places.
I've kept it in a public header for the use of projects like Swift
that might want to plug in to Clang's serialization framework.
I've also moved OMPClauseReader into an implementation file,
although it can't be made private because of friendship.
This refactors the if-statements handling the hashing of various
MachineOperand types into a switch-statement. The purpose is to cover
all the basis for all MachineOperand types while being very deliberate
about which MachineOperand types we are not handling and why (better
added comments). This patch is a NFC redo of https://reviews.llvm.org/D71396.
Much of the changes present in D71396 will come in smaller follow-up patches
that will add support for hashing the MachineOperand types that aren't
covered piece-meal with tests for each new case.
Summary:
In preparation of D65531 as well as the reuse of these tests for the
Attributor, we modernize them and use the update_test_checks to simplify
updates.
This was done with the update_test_checks after D68819 and D68850.
Reviewers: hfinkel, vsk, dblaikie, davidxl, tejohnson, tstellar, echristo, chandlerc, efriedma, lebedev.ri
Subscribers: bollu, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68766
On MSVC, friend declarations are (incorrectly) visible even if
not otherwise declared, which causes them to interfere with
lookup. ASTTypeWriter is actually in an anonymous namespace
and cannot be ASTWriter's friend. The others simply don't need
to be anymore.
The basic technical design here is that we have three levels
of readers and writers:
- At the lowest level, there's a `Basic{Reader,Writer}` that knows
how to emit the basic structures of the AST. CRTP allows this to
be metaprogrammed so that the client only needs to support a handful
of primitive types (e.g. `uint64_t` and `IdentifierInfo*`) and more
complicated "inline" structures such as `DeclarationName` can just
be emitted in terms of those primitives.
In Clang's binary-serialization code, these are
`ASTRecord{Reader,Writer}`. For now, a large number of basic
structures are still emitted explicitly by code on those classes
rather than by either TableGen or CRTP metaprogramming, but I
expect to move more of these over.
- In the middle, there's a `Property{Reader,Writer}` which is
responsible for processing the properties of a larger object. The
object-level reader/writer asks the property-level reader/writer to
project out a particular property, yielding a basic reader/writer
which will be used to read/write the property's value, like so:
```
propertyWriter.find("count").writeUInt32(node->getCount());
```
Clang's binary-serialization code ignores this level (it uses
the basic reader/writer as the property reader/writer and has the
projection methods just return `*this`) and simply relies on the
roperties being read/written in a stable order.
- At the highest level, there's an object reader/writer (e.g.
`Type{Reader,Writer}` which emits a logical object with properties.
Think of this as writing something like a JSON dictionary literal.
I haven't introduced support for bitcode abbreviations yet --- it
turns out that there aren't any operative abbreviations for types
besides the QualType one --- but I do have some ideas of how they
should work. At any rate, they'll be necessary in order to handle
statements.
I'm sorry for not disentangling the patches that added basic and type
reader/writers; I made some effort to, but I ran out of energy after
disentangling a number of other patches from the work.
Negligible impact on module size, time to build a set of about 20
fairly large modules, or time to read a few declarations out of them.
There are three significant changes here:
- Most of the methods to read various embedded structures (`APInt`,
`NestedNameSpecifier`, `DeclarationName`, etc.) have been moved
from `ASTReader` to `ASTRecordReader`. This cleans up quite a
bit of code which was passing around `(F, Record, Idx)` arguments
everywhere or doing explicit indexing, and it nicely parallels
how it works on the writer side. It also sets us up to then move
most of these methods into the `BasicReader`s that I'm introducing
as part of abstract serialization.
As part of this, several of the top-level reader methods (e.g.
`readTypeRecord`) have been converted to use `ASTRecordReader`
internally, which is a nice readability improvement.
- I've standardized most of these method names on `readFoo` rather
than `ReadFoo` (used in some of the helper structures) or `GetFoo`
(used for some specific types for no apparent reason).
- I've changed a few of these methods to return their result instead
of reading into an argument passed by reference. This is partly
for general consistency and partly because it will make the
metaprogramming easier with abstract serialization.
the tblgen AST node hierarchies.
Not totally NFC because both of the emitters now emit in a different
order. The type-nodes emitter now visits nodes in hierarchy order,
which means we could use range checks in classof if we had any types
that would benefit from that; currently we do not. The AST-nodes
emitter now uses a multimap keyed by the name of the record; previously
it was using `Record*`, which of couse isn't stable across processes
and may have led to non-reproducible builds in some circumstances.
This was part of D70767. When we replace the value of (call/invoke)
instructions we do not want to disturb the old call graph so we will
only replace instruction uses until we get rid of the old PM.
Accepted as part of D70767.
The Attributor can, to some degree, do what IPConstantProp does. We can
consequently use the corner cases already collected and tested for in
the IPConstantProp tests to improve Attributor test coverage.
This exposed various bugs fixed in previous Attributor patches.
Not all functionality of IPConstantProp is available in AAValueSimplify
and AAIsDead so some tests show that we cannot perform the expected
constant propagation.
Reviewers: fhahn, efriedma, mssimpso, davide
Subscribers: bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69748
I want to pass some CMake cache files in CLANG_BOOTSTRAP_CMAKE_ARGS as
`-C <cache file>.cmake` arguments. I want to be able to use the values
of the bootstrap passthrough variables in the cache files, so the cache
file arguments need to be after passthrough variables. This should be
safe because the values of passthrough variables are all constants and
can't refer to values in CLANG_BOOTSTRAP_CMAKE_ARGS.
Differential Revision: https://reviews.llvm.org/D71428
The change allows clang -mno-omit-leaf-frame-pointer to disable frame
pointer elimination. This behavior matches X86 and Mips, and also GCC
AArch64.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71168
This matches https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html
> -momit-leaf-frame-pointer
> -mno-omit-leaf-frame-pointer
>
> Omit or keep the frame pointer in leaf functions. The former behavior is the default.
-mno-omit-leaf-frame-pointer is currently a no-op because
TargetOptions::DisableFramePointerElim is only considered for non-leaf
functions.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71167
libcxx/test/std/containers/sequences/array/at.pass.cpp
Need to include <stdexcept> for std::out_of_range.
libcxx/test/std/localization/locale.categories/category.time/*
Need to include <ios> for std::ios.
Extends the desciptor-based indirect call support for 32-bit codegen,
and enables indirect calls for AIX.
In-depth Description:
In a function descriptor based ABI, a function pointer points at a
descriptor structure as opposed to the function's entry point. The
descriptor takes the form of 3 pointers: 1 for the function's entry
point, 1 for the TOC anchor of the module containing the function
definition, and 1 for the environment pointer:
struct FunctionDescriptor {
void *EntryPoint;
void *TOCAnchor;
void *EnvironmentPointer;
};
An indirect call has several steps of loading the the information from
the descriptor into the proper registers for setting up the call. Namely
it has to:
1) Save the caller's TOC pointer into the TOC save slot in the linkage
area, and then load the callee's TOC pointer into the TOC register
(GPR 2 on AIX).
2) Load the function descriptor's entry point into the count register.
3) Load the environment pointer into the environment pointer register
(GPR 11 on AIX).
4) Perform the call by branching on count register.
5) Restore the caller's TOC pointer after returning from the indirect call.
A couple important caveats to the above:
- There is no way to directly load a value from memory into the count register.
Instead we populate the count register by loading the entry point address into
a gpr and then moving the gpr to the count register.
- The TOC restore has to come immediately after the branch on count register
instruction (i.e., the 1st instruction executed after we return from the
call). This is an implementation limitation. We could, in theory, schedule
the restore elsewhere as long as no uses of the TOC pointer fall in between
the call and the restore; however, to keep it simple, we insert a pseudo
instruction that represents both the indirect branch instruction and the
load instruction that restores the caller's TOC from the linkage area. As
they flow through the compiler as a single pseudo instruction, nothing can be
inserted between them and the caller's TOC is then valid at any use.
Differtential Revision: https://reviews.llvm.org/D70724
Legalization algorithm is complicated by two facts:
1) While regular instructions should be possible to legalize in
an isolated, per-instruction, context-free manner, legalization
artifacts can only be eliminated in pairs, which could be deeply, and
ultimately arbitrary nested: { [ () ] }, where which paranthesis kind
depicts an artifact kind, like extend, unmerge, etc. Such structure
can only be fully eliminated by simple local combines if they are
attempted in a particular order (inside out), or alternatively by
repeated scans each eliminating only one innermost pair, resulting in
O(n^2) complexity.
2) Some artifacts might in fact be regular instructions that could (and
sometimes should) be legalized by the target-specific rules. Which
means failure to eliminate all artifacts on the first iteration is
not a failure, they need to be tried as instructions, which may
produce more artifacts, including the ones that are in fact regular
instructions, resulting in a non-constant number of iterations
required to finish the process.
I trust the recently introduced termination condition (no new artifacts
were created during as-a-regular-instruction-retrial of artifacts not
eliminated on the previous iteration) to be efficient in providing
termination, but only performing the legalization in full if and only if
at each step such chains of artifacts are successfully eliminated in
full as well.
Which is currently not guaranteed, as the artifact combines are applied
only once and in an arbitrary order that has to do with the order of
creation or insertion of artifacts into their worklist, which is a no
particular order.
In this patch I make a small change to the artifact combiner, making it
to re-insert into the worklist immediate (modulo a look-through copies)
artifact users of each vreg that changes its definition due to an
artifact combine.
Here the first scan through the artifacts worklist, while not
being done in any guaranteed order, only needs to find the innermost
pair(s) of artifacts that could be immediately combined out. After that
the process follows def-use chains, making them shorter at each step, thus
combining everything that can be combined in O(n) time.
Reviewers: volkan, aditya_nandakumar, qcolombet, paquette, aemerson, dsanders
Reviewed By: aditya_nandakumar, paquette
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71448
and introducing new unittests/CodeGen/GlobalISel/LegalizerTest.cpp
relying on it to unit test the entire legalizer algorithm (including the
top-level main loop).
See also https://reviews.llvm.org/D71448
D39317 made clang use .init_array when no gcc installations is found.
This change changes all gcc installations to use .init_array .
GCC 4.7 by default stopped providing .ctors/.dtors compatible crt files,
and stopped emitting .ctors for __attribute__((constructor)).
.init_array should always work.
FreeBSD rules are moved to FreeBSD.cpp to make Generic_ELF rules clean.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71434
When parsing the code with OpenMP and the function's body must be
skipped, need to skip also OpenMP annotation tokens. Otherwise the
counters for braces/parens are unbalanced and parsing fails.
Summary:
When running the tests on a Ubuntu 18.04 machine this test is crashing for
me inside the runtime linker. My guess is that it is trying to save more
registers (possibly large vector ones) and the current stack space is not
sufficient.
Reviewers: samsonov, kcc, eugenis
Reviewed By: eugenis
Subscribers: eugenis, merge_guards_bot, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D71461
Summary:
To find potential opportunities to use getMemBasePlusOffset() I looked at
all ISD::ADD uses found with the regex getNode\(ISD::ADD,.+,.+Ptr
in lib/CodeGen/SelectionDAG. If this patch is accepted I will convert
the files in the individual backends too.
The motivation for this change is our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project). We use a separate register
type to store pointers (128-bit capabilities, which are effectively
unforgeable and monotonic fat pointers). These capabilities permit a
reduced set of operations and therefore use a separate ValueType (iFATPTR).
to represent pointers implemented as capabilities.
Therefore, we need to avoid using ISD::ADD for our patterns that operate
on pointers and need to use a function that chooses ISD::ADD or a new
ISD::PTRADD opcode depending on the value type.
We originally added a new DAG.getPointerAdd() function, but after this
patch series we can modify the implementation of getMemBasePlusOffset()
instead. Avoiding direct uses of ISD::ADD for pointer types will
significantly reduce the amount of assertion/instruction selection
failures for us in future upstream merges.
Reviewers: spatel
Reviewed By: spatel
Subscribers: merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71207
Summary:
This change is preparatory work to use this helper functions in more places.
In order to make this change, getMemBasePlusOffset() has been extended to
also take a SDNodeFlags parameter.
The motivation for this change is our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project). We use a separate register
type to store pointers (128-bit capabilities, which are effectively
unforgeable and monotonic fat pointers). These capabilities permit a
reduced set of operations and therefore use a separate ValueType (iFATPTR).
to represent pointers implemented as capabilities.
Therefore, we need to avoid using ISD::ADD for our patterns that operate
on pointers and need to use a function that chooses ISD::ADD or a new
ISD::PTRADD opcode depending on the value type.
We originally added a new DAG.getPointerAdd() function, but after this
patch series we can modify the implementation of getMemBasePlusOffset()
instead. Avoiding direct uses of ISD::ADD for pointer types will
significantly reduce the amount of assertion/instruction selection
failures for us in future upstream merges.
Reviewers: spatel
Reviewed By: spatel
Subscribers: merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71206