It broke the Chromium / SQLite build; see PR34830.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy
>
> Reviewed By: lsaba
>
> Subscribers: jmolloy, spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 314919
Somehow a few massive errors slipped though the cracks of testing.
1. The code in Segment::finalize was left over from the old layout
algorithm. In certain situations this would cause very strange issues
with segment layout. For instance in the shift-segments.test case it
would cause the second segment to have the same offset as the first.
2. In debugging this I discovered another issue. Namely section alignment
was not being computed based on Section->Align but instead
Section->Offset which is bizarre and makes no sense. I have no clue how
it worked in the first place. This issue is also fixed
3. Fixing #2 exposed a bug where things were not being written past the end
of the file that technically should have been. This was because in
certain cases (like overlapping-segments) the end of the file wouldn't
always be bumped if the offset could be chosen relative to an existing
segment that already had it's offset chosen. For fully nested segments
this is fine but for overlapping segments this leaves the end of the
file short. So I changed how the offset is bumped when looping though
segments.
Differential Revision: https://reviews.llvm.org/D38436
llvm-svn: 314918
Summary:
This patch teaches `DT.applyUpdates` to take the fast when applying zero or just one update and makes it not run the internal batch updater machinery.
With this patch, it should no longer make sense to have a special check in user's code that checks the update sequence size before applying them, e.g.
```
if (!MyUpdates.empty())
DT.applyUpdates(MyUpdates);
```
or
```
if (MyUpdates.size() == 1)
if (...)
DT.insertEdge(...)
else
DT.deleteEdge(...)
```
Reviewers: dberlin, brzycki, davide, grosser, sanjoy
Reviewed By: dberlin, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38541
llvm-svn: 314917
Summary:
normpath() was being called on an empty string and appended to
the environment variable in the case where the environment variable
was unset. This led to ":." being appended to the path, since
normpath() of an empty string is '.', presumably to represent cwd.
Reviewers: zturner, sqlbyme, modocache
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38542
llvm-svn: 314915
This patch redefines the MOVSS/MOVSD instructions to take VR128 as its second input. This allows the MOVSS/SD->BLEND commute to work without requiring a COPY to be inserted.
This should fix PR33079
Overall this looks to be an improvement in the generated code. I haven't checked the EXPENSIVE_CHECKS build but I'll do that and update with results.
Differential Revision: https://reviews.llvm.org/D38449
llvm-svn: 314914
This patch introduces a note for variable declaration that are later deleted.
Adds FIXME notes for possible automatic type-rewriting positions as well.
Reviewed by aaron.ballman
Differential: https://reviews.llvm.org/D38411
llvm-svn: 314913
r314857 changed the CFG that resulted in the flaky test MachineBranchProb.ll to
fail the bots again. Marking it as unsupported for ARM/AArch64 again until we
find the cause.
llvm-svn: 314912
In ProgramState::getSVal(Location, Type) API which dereferences a pointer value,
when the optional Type parameter is not supplied and the Location is not typed,
type should have been guessed on a best-effort basis by inspecting the Location
more deeply. However, this never worked; the auto-detected type was instead
a pointer type to the correct type.
Fixed the issue and added various test cases to demonstrate which parts of the
analyzer were affected (uninitialized pointer argument checker, C++ trivial copy
modeling, Google test API modeling checker).
Additionally, autodetected void types are automatically replaced with char,
in order to simplify checker APIs. Which means that if the location is a void
pointer, getSVal() would read the first byte through this pointer
and return its symbolic value.
Fixes pr34305.
Differential Revision: https://reviews.llvm.org/D38358
llvm-svn: 314910
Before the patch this was in Analysis. Moving it to IR and making it implicit
part of LLVMContext::diagnose allows the full opt-remark facility to be used
outside passes e.g. the pass manager. Jessica is planning to use this to
report function size after each pass. The same could be used for time
reports.
Tested with BUILD_SHARED_LIBS=On.
llvm-svn: 314909
We can likely remove most of these as redundant in the near future,
but I'm trying to make sure I don't introduce any regressions with D38514.
llvm-svn: 314907
https://reviews.llvm.org/D38371
This patch implements codegen for the combined 'teams distribute" OpenMP pragma and adds regression tests for all its clauses.
llvm-svn: 314905
Early out from vector shift by immediates that will exceed eltsize - don't bother making an unnecessary ComputeNumSignBits recursive call.
llvm-svn: 314903
The recent fix in D38258 was wrong: getAuxTriple() only returns
non-null values for the CUDA toolchain. That is why the now added
test for PPC and X86 failed.
Differential Revision: https://reviews.llvm.org/D38372
llvm-svn: 314902
The option is introduced with only one possible value
-polly-stmt-granularity=bb which represents the current behaviour, which
is outlined into the new function buildSequentialBlockStmts().
More options will be added in future commits.
llvm-svn: 314900
Summary:
Fix an assertion failure (http://llvm.org/PR34800) and clean up unused code relevant to the fixed logic.
A bit of context: when `SExprBuilder::translateMemberExpr` is called on a member expression that involves a conversion operator, for example, `til::Project` constructor can't just call `getName()` on it, since the name is not a simple identifier. In order to handle this case I've introduced an optional string to print the member name to. I discovered that the other two `til::Project` constructors are not used, so it was better to delete them instead of ensuring they work correctly with the new logic.
Reviewers: aaron.ballman
Reviewed By: aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D38458
llvm-svn: 314895
We make sure that the final reload of an invariant scalar memory access uses the
same stack slot into which the invariant memory access was stored originally.
Earlier, this was broken as we introduce a new stack slot aside of the preload
stack slot, which remained uninitialized and caused our escaping loads to
contain garbage. This happened due to us clearing the pre-populated values
in EscapeMap after kernel code generation. We address this issue by preserving
the original host values and restoring them after kernel code generation.
EscapeMap is not expected to be used during kernel code generation, hence we
clear it during kernel generation to make sure that any unintended uses are
noticed.
llvm-svn: 314894
Previously, on long branches (relative jumps of >4 kB), an assertion
failure was hit, as AVRInstrInfo::insertIndirectBranch was not
implemented. Despite its name, it is called by the branch relaxator
for *all* unconditional jumps.
Patch by Thomas Backman.
llvm-svn: 314891
In some cases, the code generator attempts to generate instructions such as:
lddw r24, Y+63
which expands to:
ldd r24, Y+63
ldd r25, Y+64 # Oops! This is actually ld r25, Y in the binary
This commit limits the first offset to 62, and thus the second to 63.
It also updates some asserts in AVRExpandPseudoInsts.cpp, including for
INW and OUTW, which appear to be unused.
Patch by Thomas Backman.
llvm-svn: 314890
We have verneed1.so, verneed2.so files and verneed.so.sh script
to produce them. They were committed long time ago when LLD
was not yet able to produce some sections for versioning
(".gnu.version_r" I think).
There is no point to have them as binaries anymore. Patch
creates asm inputs instead based on verneed.so.sh content.
Differential revision: https://reviews.llvm.org/D38505
llvm-svn: 314889
This adds diagnostics for invalid immediate operands to the MOVW and MOVT
instructions (ARM and Thumb).
Differential revision: https://reviews.llvm.org/D31879
llvm-svn: 314888
Currently, our diagnostics for assembly operands are not consistent.
Some start with (for example) "immediate operand must be ...",
and some with "operand must be an immediate ...". I think the latter
form is preferable for a few reasons:
* It's unambiguous that it is referring to the expected type of operand, not
the type the user provided. For example, the user could provide an register
operand, and get a message taking about an operand is if it is already an
immediate, just not in the accepted range.
* It allows us to have a consistent style once we add diagnostics for operands
that could take two forms, for example a label or pc-relative memory operand.
Differential revision: https://reviews.llvm.org/D36689
llvm-svn: 314887
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy
Reviewed By: lsaba
Subscribers: jmolloy, spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 314886
I found that llvm-mc does not like non-english characters even in comments,
which it tries to tokenize.
Problem happens because of functions like isdigit(), isalnum() which takes
int argument and expects it is not negative.
But at the same time MCParser uses char* to store input buffer poiner, char has signed value,
so it is possible to pass negative value to one of functions from above and
that triggers an assert.
Testcase for demonstration is provided.
To fix the issue helper functions were introduced in StringExtras.h
Differential revision: https://reviews.llvm.org/D38461
llvm-svn: 314883
This time invoking llc with "-march=x86-64" in the testcase, so we don't assume
the default target is x86.
Summary:
If we have
%vreg0<def> = PHI %vreg2<undef>, <BB#0>, %vreg3, <BB#2>; GR32:%vreg0,%vreg2,%vreg3
%vreg3<def,tied1> = ADD32ri8 %vreg0<kill,tied0>, 1, %EFLAGS<imp-def>; GR32:%vreg3,%vreg0
then we can't just change %vreg0 into %vreg3, since %vreg2 is actually
undef. We would have to also copy the undef flag to be able to change the
register.
Instead we deal with this case like other cases where we can't just
replace the register: we insert a COPY. The code creating the COPY already
copied all flags from the PHI input, so the undef flag will be transferred
as it should.
Reviewers: kparzysz
Reviewed By: kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38235
llvm-svn: 314882
We have found some corner cases connected to range intersection where IRCE makes
a bad thing when the latch condition is unsigned. The fix for that will go as a follow up.
This patch temporarily disables IRCE for unsigned latch conditions until the issue is fixed.
The unsigned latch conditions were introduced to IRCE by rL310027.
Differential Revision: https://reviews.llvm.org/D38529
llvm-svn: 314881
Summary:
If we have
%vreg0<def> = PHI %vreg2<undef>, <BB#0>, %vreg3, <BB#2>; GR32:%vreg0,%vreg2,%vreg3
%vreg3<def,tied1> = ADD32ri8 %vreg0<kill,tied0>, 1, %EFLAGS<imp-def>; GR32:%vreg3,%vreg0
then we can't just change %vreg0 into %vreg3, since %vreg2 is actually
undef. We would have to also copy the undef flag to be able to change the
register.
Instead we deal with this case like other cases where we can't just
replace the register: we insert a COPY. The code creating the COPY already
copied all flags from the PHI input, so the undef flag will be transferred
as it should.
Reviewers: kparzysz
Reviewed By: kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38235
llvm-svn: 314879
Summary:
This change removes the dependency on using a std::deque<...> for the
storage of the buffers in the buffer queue. We instead implement a
fixed-size circular buffer that's resilient to exhaustion, and preserves
the semantics of the BufferQueue.
We're moving away from using std::deque<...> for two reasons:
- We want to remove dependencies on the STL for data structures.
- We want the data structure we use to not require re-allocation in
the normal course of operation.
The internal implementation of the buffer queue uses heap-allocated
arrays that are initialized once when the BufferQueue is created, and
re-uses slots in the buffer array as buffers are returned in order.
We also change the lock used in the implementation to a spinlock
instead of a blocking mutex. We reason that since the release operations
now take very little time in the critical section, that a spinlock would
be appropriate.
This change is related to D38073.
This change is a re-submit with the following changes:
- Keeping track of the live buffers with a counter independent of the
pointers keeping track of the extents of the circular buffer.
- Additional documentation of what the data members are meant to
represent.
Reviewers: dblaikie, kpw, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38119
llvm-svn: 314877
The previous version didn't work if the jump table base address didn't
fit in 32 bit, since it was encoded as an immediate offset. And in case
the jump table is encoded as 32 bit label differences, we need to
load and add them to the table base first.
This solves the first half of the issues mentioned in PR34720.
Also fix some of the errors pointed out by -verify-machineinstrs, by
using GR32_NOSPRegClass.
Differential Revision: https://reviews.llvm.org/D38333
llvm-svn: 314876
Summary:
When the XRay user calls the API to finish writing the log, the thread
which is calling the API still hasn't finished and therefore won't get
its trace written. Add a test for only the main thread to check this.
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38493
llvm-svn: 314875
Test needs some slight adjustment because we no longer check the existence of
BFI but rather that the actual hotness is set on the remark. If entry_count
is not set getBlockProfileCount returns None.
llvm-svn: 314874
We were injecting the function into the wrong semantic context, resulting in it
failing to be registered as a global for redeclaration lookup. As a
consequence, we accepted invalid code since r310616.
Fixing that resulted in the "out-of-scope declaration" diagnostic firing a lot
more often. It turned out that warning codepath was non-conforming, because it
did not cause us to inject the implicitly-declared function into the enclosing
block scope. We now only warn if the type of the out-of-scope declaration
doesn't match the type of an implicitly-declared function; in all other cases,
we produce the normal warning for an implicitly-declared function.
llvm-svn: 314871
This is because lib/Fuzzer doesn't really depend on llvm infrastucture.
It's not easy to access the llvm hardware_concurrency here.
Differential Reivision: https://reviews.llvm.org/D38481
llvm-svn: 314870